
Christopher A Klausmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5739828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trait-Based Community Ecology of Phytoplankton. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 615-639.	3.8	943
2	Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 2004, 429, 171-174.	13.7	767
3	Regular and Irregular Patterns in Semiarid Vegetation. Science, 1999, 284, 1826-1828.	6.0	728
4	The role of functional traits and tradeâ€offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters, 2007, 10, 1170-1181.	3.0	699
5	A Global Pattern of Thermal Adaptation in Marine Phytoplankton. Science, 2012, 338, 1085-1088.	6.0	638
6	Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnology and Oceanography, 2012, 57, 554-566.	1.6	328
7	Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 2004, 49, 1463-1470.	1.6	263
8	Eco-evolutionary responses of biodiversity to climate change. Nature Climate Change, 2012, 2, 747-751.	8.1	262
9	The evolutionary ecology of metacommunities. Trends in Ecology and Evolution, 2008, 23, 311-317.	4.2	253
10	Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia, 2010, 653, 15-28.	1.0	249
11	Algal games: The vertical distribution of phytoplankton in poorly mixed water columns. Limnology and Oceanography, 2001, 46, 1998-2007.	1.6	243
12	Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2665-2670.	3.3	207
13	Competition of Phytoplankton under Fluctuating Light. American Naturalist, 2001, 157, 170-187.	1.0	194
14	Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Global Change Biology, 2017, 23, 3269-3280.	4.2	188
15	Large-scale biodiversity patterns in freshwater phytoplankton. Ecology, 2011, 92, 2096-2107.	1.5	182
16	Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnology and Oceanography, 2016, 61, 1232-1244.	1.6	173
17	Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecology Letters, 2013, 16, 56-63.	3.0	149
18	Global biogeochemical impacts of phytoplankton: a traitâ€based perspective. Journal of Ecology, 2015, 103, 1384-1396.	1.9	149

#	Article	IF	CITATIONS
19	Spatial Heterogeneity and Irreversible Vegetation Change in Semiarid Grazing Systems. American Naturalist, 2002, 159, 209-218.	1.0	144
20	Phytoplankton stoichiometry. Ecological Research, 2008, 23, 479-485.	0.7	143
21	Light and growth in marine phytoplankton: allometric, taxonomic, and environmental variation. Limnology and Oceanography, 2015, 60, 540-552.	1.6	140
22	Ecoâ€evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnology and Oceanography, 2011, 56, 589-598.	1.6	136
23	Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology - Progress Series, 2012, 470, 235-248.	0.9	129
24	Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. Ecology, 2011, 92, 2085-2095.	1.5	121
25	Floquet theory: a useful tool for understanding nonequilibrium dynamics. Theoretical Ecology, 2008, 1, 153-161.	0.4	117
26	Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future. Frontiers in Microbiology, 2015, 06, 254.	1.5	109
27	A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand. Oikos, 2005, 109, 40-51.	1.2	98
28	Ecological Context Influences Epidemic Size and Parasite-Driven Evolution. Science, 2012, 335, 1636-1638.	6.0	98
29	The vertical distribution of phytoplankton in stratified water columns. Journal of Theoretical Biology, 2011, 269, 16-30.	0.8	97
30	Phytoplankton Competition for Nutrients and Light in a Stratified Water Column. American Naturalist, 2009, 174, 190-203.	1.0	91
31	A model of flexible uptake of two essential resources. Journal of Theoretical Biology, 2007, 246, 278-289.	0.8	81
32	Phytoplankton nutrient competition under dynamic light regimes. Limnology and Oceanography, 2004, 49, 1457-1462.	1.6	80
33	Functional traits explain phytoplankton responses to environmental gradients across lakes of the United States. Ecology, 2013, 94, 1626-1635.	1.5	77
34	Rapid thermal adaptation in a marine diatom reveals constraints and tradeâ€offs. Global Change Biology, 2018, 24, 4554-4565.	4.2	74
35	Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecology Letters, 2019, 22, 1860-1869.	3.0	64
36	Coexistence in a variable environment: Eco-evolutionary perspectives. Journal of Theoretical Biology, 2013, 339, 14-25.	0.8	62

#	Article	IF	CITATIONS
37	Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecology Letters, 2018, 21, 1853-1868.	3.0	57
38	Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME Journal, 2015, 9, 1857-1869.	4.4	52
39	When Predators Help Prey Adapt and Persist in a Changing Environment. American Naturalist, 2017, 190, 83-98.	1.0	52
40	Ecological Specialization and Trade Affect the Outcome of Negotiations in Mutualism. American Naturalist, 2012, 179, 567-581.	1.0	50
41	Species packing in ecoâ€evolutionary models of seasonally fluctuating environments. Ecology Letters, 2017, 20, 1158-1168.	3.0	49
42	From competition to facilitation and mutualism: a general theory of the niche. Ecological Monographs, 2021, 91, e01458.	2.4	49
43	The influence of balanced and imbalanced resource supply on biodiversity–functioning relationship across ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150283.	1.8	43
44	Habitat destruction and extinction in competitive and mutualistic metacommunities. Ecology Letters, 2001, 4, 57-63.	3.0	41
45	Regional neutrality evolves through local adaptive niche evolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2612-2617.	3.3	41
46	Optimal Cell Size for Resource Uptake in Fluids: A New Facet of Resource Competition. American Naturalist, 2008, 171, 59-70.	1.0	40
47	Successional state dynamics: A novel approach to modeling nonequilibrium foodweb dynamics. Journal of Theoretical Biology, 2010, 262, 584-595.	0.8	39
48	The role of phytoplankton diversity in the emergent oceanic stoichiometry. Journal of Plankton Research, 2016, 38, 1021-1035.	0.8	39
49	TRANSIENT DYNAMICS OF PELAGIC PRODUCER–GRAZER SYSTEMS IN A GRADIENT OF NUTRIENTS AND MIXING DEPTHS. Ecology, 2008, 89, 1272-1286.	1.5	38
50	Successional Dynamics in the Seasonally Forced Diamond Food Web. American Naturalist, 2012, 180, 1-16.	1.0	35
51	Evolutionary stability of coexistence due to the storage effect in a two-season model. Theoretical Ecology, 2017, 10, 91-103.	0.4	33
52	Nutrient utilization traits of phytoplankton. Ecology, 2015, 96, 2311-2311.	1.5	32
53	Trait-based ecological and eco-evolutionary theory. , 2020, , 161-194.		30
54	Local interactions and self-organized spatial patterns stabilize microbial cross-feeding against cheaters. Journal of the Royal Society Interface, 2018, 15, 20170822.	1.5	29

#	Article	IF	CITATIONS
55	A Three-Way Trade-Off Maintains Functional Diversity under Variable Resource Supply. American Naturalist, 2013, 182, 786-800.	1.0	26
56	An evolutionary tipping point in a changing environment. Evolution; International Journal of Organic Evolution, 2017, 71, 2930-2941.	1.1	26
57	Ecological limits to evolutionary rescue. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190453.	1.8	23
58	Geometrical envelopes: Extending graphical contemporary niche theory to communities and eco-evolutionary dynamics. Journal of Theoretical Biology, 2016, 407, 271-289.	0.8	22
59	Microbial cross-feeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters. Journal of Theoretical Biology, 2019, 465, 63-77.	0.8	22
60	Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space. American Naturalist, 2017, 189, 381-395.	1.0	19
61	How spatial structure and neighbor uncertainty promote mutualists and weaken black queen effects. Journal of Theoretical Biology, 2018, 446, 33-60.	0.8	18
62	Linking traits to species diversity and community structure in phytoplankton. , 2010, , 15-28.		18
63	Experimental test of phytoplankton competition for nutrients and light in poorly mixed water columns. Ecological Monographs, 2012, 82, 239-256.	2.4	17
64	Global stability in a chemostat with multiple nutrients. Journal of Mathematical Biology, 2006, 52, 419-438.	0.8	16
65	Periodically forced foodâ€chain dynamics: model predictions and experimental validation. Ecology, 2009, 90, 3099-3107.	1.5	16
66	Control in mutualisms: Combined implications of partner choice and bargaining roles. Journal of Theoretical Biology, 2010, 267, 535-545.	0.8	15
67	Competition and coexistence between a syntrophic consortium and a metabolic generalist, and its effect on productivity. Journal of Theoretical Biology, 2016, 404, 348-360.	0.8	13
68	A simple model for analyzing climatic effects on terrestrial carbon and nitrogen dynamics: An arctic case study. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	11
69	Transient dynamics and the destabilizing effects of prey heterogeneity. Ecology, 2012, 93, 632-644.	1.5	11
70	Climate Change–Driven Regime Shifts in a Planktonic Food Web. American Naturalist, 2021, 197, 281-295.	1.0	11
71	Plant Strategies along Resource Gradients. American Naturalist, 2018, 192, 360-378.	1.0	10
72	Resource Competition and Host Feedbacks Underlie Regime Shifts in Gut Microbiota. American Naturalist, 2021, 198, 1-12.	1.0	9

#	Article	IF	CITATIONS
73	How the resource supply distribution structures competitive communities. Journal of Theoretical Biology, 2022, 538, 111054.	0.8	8
74	How leaking and overproducing resources affect the evolutionary robustness of cooperative cross-feeding. Journal of Theoretical Biology, 2018, 454, 278-291.	0.8	4
75	Analysis of a model of two parallel food chains. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 337-359.	0.5	3