Clare Y Slaney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5739366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crossâ€ŧalk between tumors at anatomically distinct sites. FEBS Journal, 2021, 288, 81-90.	2.2	9
2	Enhancing co-stimulation of CAR T cells to improve treatment outcomes in solid cancers. Immunotherapy Advances, 2021, 1, .	1.2	7
3	Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology, 2021, 21, 769-784.	10.6	83
4	Understanding T cell phenotype for the design of effective chimeric antigen receptor T cell therapies. , 2021, 9, e002555.		41
5	A Histone Deacetylase Inhibitor, Panobinostat, Enhances Chimeric Antigen Receptor T-cell Antitumor Effect Against Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 6222-6234.	3.2	17
6	Enhancing Adoptive Cell Transfer with Combination BRAF-MEK and CDK4/6 Inhibitors in Melanoma. Cancers, 2021, 13, 6342.	1.7	4
7	Enhancing chimeric antigen receptor Tâ€cell immunotherapy against cancer using a nanoemulsionâ€based vaccine targeting crossâ€presenting dendritic cells. Clinical and Translational Immunology, 2020, 9, e1157.	1.7	23
8	Challenges and Opportunities for Effective Cancer Immunotherapies. Cancers, 2020, 12, 3164.	1.7	7
9	Primary and metastatic breast tumors cross-talk to influence immunotherapy responses. Oncolmmunology, 2020, 9, 1802979.	2.1	5
10	Chimeric antigen receptor T cell therapies for thoracic cancers— challenges and opportunities. Journal of Thoracic Disease, 2020, 12, 4510-4515.	0.6	1
11	Novel combination immunotherapy for pancreatic cancer: potent antiâ€ŧumor effects with CD40 agonist and interleukinâ€15 treatment. Clinical and Translational Immunology, 2020, 9, e1165.	1.7	26
12	Current status, challenges and perspectives: immunotherapy and tumour microenvironment in thoracic cancer. Journal of Thoracic Disease, 2020, 12, 4496-4497.	0.6	0
13	Tissue-specific tumour microenvironments are an emerging determinant of immunotherapy responses. Journal of Thoracic Disease, 2020, 12, 4504-4509.	0.6	3
14	453â€Novel combination immunotherapy for boosting and priming immune responses in pancreatic cancer: strong anti-tumour effects with interleukin-15 and CD40 agonist treatment. , 2020, , .		0
15	Genetic Redirection of T Cells for the Treatment of Pancreatic Cancer. Frontiers in Oncology, 2019, 9, 56.	1.3	36
16	Tissueâ€specific tumor microenvironments influence responses to immunotherapies. Clinical and Translational Immunology, 2019, 8, e1094.	1.7	20
17	Enterotoxins can support CAR T cells against solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25229-25235.	3.3	16
18	Abstract PR06: Dual-specific T-cells and an indirect vaccine eradicate large solid tumors. , 2019, , .		0

Abstract PRO6: Dual-specific T-cells and an indirect vaccine eradicate large solid tumors. , 2019, , . 18

2

CLARE Y SLANEY

#	Article	IF	CITATIONS
19	Abstract A048: Targeting the tumor microenvironment to enhance immunotherapy against cancer. , 2019, , .		0
20	Tissue-Dependent Tumor Microenvironments and Their Impact on Immunotherapy Responses. Frontiers in Immunology, 2018, 9, 70.	2.2	120
21	CARs versus BiTEs: A Comparison between T Cell–Redirection Strategies for Cancer Treatment. Cancer Discovery, 2018, 8, 924-934.	7.7	173
22	Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses through CD4+Foxp3â^ Cell–Mediated Modulation of CD103+ Dendritic Cells. Cancer Immunology Research, 2018, 6, 1069-1081.	1.6	67
23	A Multifunctional Role for Adjuvant Anti-4-1BB Therapy in Augmenting Antitumor Response by Chimeric Antigen Receptor T Cells. Cancer Research, 2017, 77, 1296-1309.	0.4	61
24	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	3.2	95
25	Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. Journal of Clinical Investigation, 2017, 127, 929-941.	3.9	251
26	An ultrastructural investigation of tumors undergoing regression mediated by immunotherapy. Oncotarget, 2017, 8, 115215-115229.	0.8	6
27	Abstract 631: Dual-specific T cells are highly effective in eradicating solid tumors. , 2017, , .		0
28	Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Seminars in Immunology, 2016, 28, 64-72.	2.7	52
29	Abstract A104: Eradication of large solid tumors in immunocompetent mice using dual specific CAR T cells and vaccination. , 2016, , .		0
30	Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Molecular Immunology, 2015, 67, 46-57.	1.0	100
31	Loss of Host Type-I IFN Signaling Accelerates Metastasis and Impairs NK-cell Antitumor Function in Multiple Models of Breast Cancer. Cancer Immunology Research, 2015, 3, 1207-1217.	1.6	63
32	Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression. Immunotherapy, 2015, 7, 499-512.	1.0	18
33	Releasing the Brake on Oncolytic Viral Therapy. Clinical Cancer Research, 2015, 21, 5417-5419.	3.2	3
34	CD73: A potential biomarker for anti-PD-1 therapy. Oncolmmunology, 2015, 4, e1046675.	2.1	33
35	Embryonic Lethality in Homozygous Human Her-2 Transgenic Mice Due to Disruption of the Pds5b Gene. PLoS ONE, 2015, 10, e0136817.	1.1	14
36	Trafficking of T Cells into Tumors. Cancer Research, 2014, 74, 7168-7174.	0.4	313

CLARE Y SLANEY

#	Article	IF	CITATIONS
37	BMP4 Inhibits Breast Cancer Metastasis by Blocking Myeloid-Derived Suppressor Cell Activity. Cancer Research, 2014, 74, 5091-5102.	0.4	99
38	Clinical application of genetically modified T cells in cancer therapy. Clinical and Translational Immunology, 2014, 3, e16.	1.7	94
39	The Emerging Role of Immunosurveillance in Dictating Metastatic Spread in Breast Cancer. Cancer Research, 2013, 73, 5852-5857.	0.4	47
40	A modified superantigen rescues Ly6Gâ^²CD11b+blood monocyte suppressor function and suppresses antigen-specific inflammation in EAE. Autoimmunity, 2013, 46, 269-278.	1.2	5
41	The role of Type I interferons in immunoregulation of breast cancer metastasis to the bone. Oncolmmunology, 2013, 2, e22339.	2.1	18
42	Cathepsin B Inhibition Limits Bone Metastasis in Breast Cancer. Cancer Research, 2012, 72, 1199-1209.	0.4	173
43	Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nature Medicine, 2012, 18, 1224-1231.	15.2	406
44	Glatiramer Acetate Treatment Directly Targets CD11b ⁺ Ly6G ^{â^'} Monocytes and Enhances the Suppression of Autoreactive T cells in Experimental Autoimmune Encephalomyelitis. Scandinavian Journal of Immunology, 2011, 74, 235-243.	1.3	29
45	NaÃ⁻ve blood monocytes suppress Tâ€cell function. A possible mechanism for protection from autoimmunity. Immunology and Cell Biology, 2011, 89, 7-13.	1.0	39