List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5738790/publications.pdf Version: 2024-02-01

MONCEE SAID

#	Article	IF	CITATIONS
1	A DFT study of GaSe/AlN(ZnO) two-dimensional vdW heterostructure practiced as an encouraging photocatalyst for water splitting. Computational Materials Science, 2022, 201, 110912.	3.0	12
2	Size-dependent interband optical properties of lens-shaped InAs/InP quantum wire. Optics and Laser Technology, 2022, 147, 107676.	4.6	3
3	Stacking effect on electronic properties of InSe/blue phosphorene and GaSe/blue phosphorene heterostructures from first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115115.	2.7	3
4	First-Principles Modeling of Dye Anchoring on (001) γ-Monoclinic WO ₃ Surfaces: The Role of Oxygen Vacancies. Journal of Physical Chemistry C, 2022, 126, 5424-5434.	3.1	3
5	First principles electronic structure, molecular dynamics, and optical properties of GaOF monolayer without and with defects. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 281, 115736.	3.5	4
6	Simultaneous effect study of eccentricity and capping matrix on effective dielectric function in spheroidal CdSe/ZnSe core/shell quantum dot. , 2022, 168, 207332.		5
7	Energy levels and nonlinear optical properties of spheroid-shaped CdTe/ZnTe core/shell quantum dot. Optics and Laser Technology, 2022, 155, 108425.	4.6	9
8	An ab initio study of the electronic properties of the ferroelectric heterostructure In2Se3/Bi2Se3. Applied Surface Science, 2021, 538, 148066.	6.1	21
9	Elastic and mechanical properties of cubic diamond and silicon using density functional theory and the random phase approximation. Solid State Communications, 2021, 324, 114136.	1.9	18
10	Electronic and optical properties of bismuth oxyhalides from ab initio calculations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114921.	3.5	16
11	Effect of halogenation on the optical and electronic properties of tetrathienoanthracene and tetrathionoacridine derivatives: A DFT study. Computational Condensed Matter, 2021, 26, e00528.	2.1	1
12	Temperature, hydrostatic pression and composition x effects on intersubband energy levels in ZnSe/ZnSxSe1-x core–shell quantum dot. Optik, 2021, 225, 165860.	2.9	7
13	Theoretical modeling of inter-sublevel optical properties of a ZnSe/ZnSxSe1-x and ZnSe/ZnSxSe1-x/ZnS core/shell and core/shell/shell quantum dot. Optik, 2021, 225, 165874.	2.9	4
14	Numerical modeling of linear and nonlinear optical properties in hexagonal core-shell shape ZnSe/ZnSxSe1-x quantum dot. Optik, 2021, 225, 165866.	2.9	5
15	Bandgap energy and dielectric function of GaOBr monolayer using density functional theory and beyond. Solid State Communications, 2021, 329, 114261.	1.9	7
16	Optical properties of two-dimensional AlOCl, BaFCl, and BiOCl monolayers using the density functional theory. Optik, 2021, 236, 166678.	2.9	2
17	First-principles calculations of optical properties of XFBr (X = Ba or Ca) monolayers. Optik, 2021, 236, 166643.	2.9	1
18	Magnetic effects on ordering and surface segregation in NiPt nanoalloys. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	0

#	Article	IF	CITATIONS
19	Optical properties of Janus and non-Janus diamanes monolayers using ab-initio calculations. Optik, 2021, 235, 166642.	2.9	11
20	Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond. Solid State Communications, 2021, 334-335, 114369.	1.9	3
21	Electronic structure of 2D quaternary materials and of their van der Waals heterostructures. Journal of Applied Physics, 2021, 130, 064304.	2.5	0
22	External electric field effect and impact of encapsulating matrix on optical and electronic properties within CdSe/ZnSe core/shell QDs. Physica Scripta, 2021, 96, 125806.	2.5	6
23	Electronic properties of SrFCl and SrFBr monolayers using density functional theory and GW approximation. Solid State Communications, 2021, 336, 114430.	1.9	3
24	Effect of size and composition on the third order nonlinear optical susceptibility for GaN/InxGa1-xN spherical core/shell quantum dot. Optik, 2021, 245, 167729.	2.9	7
25	Effect of nanostructure size and dielectric environment on linear and nonlinear dielectric functions in GaN/AlxGa1-xN core shell quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115463.	3.5	4
26	Modelization of electrical and optical characteristics of short-wave infrared type I InGaAsBi/InGaAs/InP quantum wells p-i-n detector. Physica Scripta, 2021, 96, 035802.	2.5	0
27	Theoretical investigation on the third order nonlinear optical susceptibility in CdS/ZnS/CdS/ZnS core/shell/well/shell quantum dots for optoelectronic applications. Physica Scripta, 2020, 95, 017001.	2.5	6
28	A DFT study of Janus structure of S and Se in HfSSe layered as a promising candidate for electronic devices. Journal of Molecular Graphics and Modelling, 2020, 96, 107511.	2.4	13
29	Linear and nonlinear susceptibilities in GaN/Al x Ga1â^'x N quantum wire. Physica Scripta, 2020, 95, 045801.	2.5	2
30	Electronic and vibrational properties of TcS2 and TcS2/Stanene heterobilayer using density functional theory. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114380.	2.7	2
31	Consequences of dielectric mismatch on linear and third order nonlinear optical properties for CdS/ZnSe core/shell QD-matrix. Chemical Physics, 2020, 539, 110947.	1.9	8
32	Theoretical investigation on linear and nonlinear dielectric function for GaN/AlxGa1â^'xN core/shell quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114675.	3.5	2
33	Electronic and optical properties of W–Sn-Z and Wâ€2-Sn-Wâ€2 monolayers using density functional theory. Solid State Communications, 2020, 321, 114016.	1.9	5
34	Tight-binding Ising modeling of the interplay between bulk ordering and surface segregation in Pt-Ag nanoalloys. Surface Science, 2020, 700, 121626.	1.9	6
35	Correction of band-gap energy and dielectric function of BiOX bulk with GW and BSE. Optik, 2020, 216, 164631.	2.9	10
36	Linear and nonlinear optical properties of CdSe/ZnTe core/shell spherical quantum dots embedded in different dielectric matrices. Photonics and Nanostructures - Fundamentals and Applications, 2020, 40, 100789.	2.0	9

#	Article	IF	CITATIONS
37	A theoretical investigation of the effect of fluorination and bromination on the optoelectronic properties of tetrathienophenazine derivatives. Computational Materials Science, 2020, 177, 109578.	3.0	6
38	Impact of dielectric environment on the linear and nonlinear optical properties for CdS/ZnS cylindrical core/shell quantum dots. Chemical Physics Letters, 2020, 744, 137215.	2.6	10
39	Electronic and optical properties of PbFCl and PbFI monolayers using density functional theory and beyond. Materials Chemistry and Physics, 2020, 252, 123233.	4.0	19
40	Quadratic optical effects in ZnS/CdS/ZnS quantum dot-quantum well. Results in Physics, 2019, 14, 102513.	4.1	5
41	Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 2019, 36, 100725.	2.0	16
42	Chemical ordering and surface segregation in Ni1-cPtc system: A theoretical study from the alloys to the nanoalloys. Results in Physics, 2019, 14, 102493.	4.1	2
43	Structural, electronic and magnetic properties of the Fe8â^'Mn Rh8 compound: A density functional study. Results in Physics, 2019, 15, 102743.	4.1	1
44	Dielectric environment effect on linear and nonlinear optical properties for CdS/ZnS core/shell quantum dots. Results in Physics, 2019, 15, 102661.	4.1	16
45	Numerical modelling of electronic and optical properties of isolated and self-assembled InAs/InP quantum dots. Optik, 2019, 182, 731-738.	2.9	12
46	DFT study of electronic and optical properties of silicene functionalized with chemical groups. Journal of Molecular Graphics and Modelling, 2019, 91, 72-79.	2.4	23
47	An ab initio study of the ferroelectric In2Se3/graphene heterostructure. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113582.	2.7	18
48	Theoretical study on third nonlinear optical susceptibility in InxGa1â^'xN/GaN cylindrical quantum dots. Physica Scripta, 2019, 94, 105810.	2.5	4
49	DFT study of the electronic and vibrational properties of silicene/stanene heterobilayer. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 127-129.	2.7	10
50	Electronic properties of several two dimensional halides from ab initio calculations. Beilstein Journal of Nanotechnology, 2019, 10, 823-832.	2.8	24
51	Third nonlinear optical susceptibility of CdS/ZnS core-shell spherical quantum dots for optoelectronic devices. Optik, 2019, 176, 162-167.	2.9	37
52	Optical Gain and Radiative Current Density in Strain Compensated GaAsP/GaAsBi/GaAsP QWs Laser Structure. , 2019, 2, .		0
53	Numerical modelling of auto-organized InAs/ InP quantum wires with different shapes. Optik, 2018, 158, 541-547.	2.9	4
54	Mathematical modelling of optical properties of CdSe/ZnS core shell quantum dot. Optik, 2018, 158, 737-746.	2.9	8

#	Article	IF	CITATIONS
55	Electronic and vibrational properties of TMDs heterogeneous bilayers, nontwisted bilayers silicene/TMDs heterostructures and photovoltaic heterojunctions of fullerenes with TMDs monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 155-164.	2.7	30
56	Calculated tunneling magnetoresistance ratio of FeRh/MgO/FeRh (001) magnetic tunnel junction. Superlattices and Microstructures, 2018, 122, 235-242.	3.1	2
57	DFT study of optoelectronic and magnetic properties of a novel type perovskites. Chemical Physics, 2018, 513, 120-128.	1.9	2
58	A theoretical evaluation of optical properties of InAs/InP quantum wire with a dome cross-section. Optik, 2018, 174, 513-520.	2.9	9
59	A first principle study of the pristine InBi honeycomb film functionalized with fluorine atoms. Journal of Fluorine Chemistry, 2018, 212, 171-179.	1.7	12
60	First-principles investigations of electronic and magnetic properties of the FeRh/MgO (001) interface. Journal of Alloys and Compounds, 2017, 700, 191-197.	5.5	6
61	First-principles investigation of the effect of oxidation on the electronic structure and magnetic properties at the FeRh/MgO (0 0 1) interface. Journal of Magnetism and Magnetic Materials, 2017, 432, 106-111.	2.3	2
62	A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups. Journal of Chemical Physics, 2017, 146, 044705.	3.0	12
63	Intrinsic strain effects on Ge/Si core/shell nanowires: Insights from atomistic simulations. Superlattices and Microstructures, 2017, 107, 83-90.	3.1	1
64	Effect of the interfacial O and Mg vacancies on electronic structure and transport properties of the FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction: DFT calculations. Journal of Magnetism and Magnetic Materials, 2017, 444, 394-400.	2.3	1
65	Optical properties of CdSe/ZnTe type II core shell nanostructures. Optik, 2017, 146, 90-97.	2.9	19
66	Intersubband optical absorption in InAs/In0.52 Al0.48As quantum wire in the presence of tilted electric field. Optik, 2017, 147, 328-333.	2.9	5
67	An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers. Journal of Chemical Physics, 2017, 147, 114701.	3.0	26
68	Theoretical study of electronic and optical properties of BN, GaN and BxGa1â^'xN in zinc blende and wurtzite structures. Optik, 2016, 127, 9212-9221.	2.9	46
69	Theory of electronic and optical properties for different shapes of InAs/In0.52Al0.48As quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 272-279.	2.7	12
70	Direct band gap In Ga1â^As/Ge type II strained quantum wells for short-wave infrared p–i–n photodetector. Optical Materials, 2015, 46, 472-480.	3.6	1
71	Stark shift of the absorption spectra in Ge/Ge1â ^{~^} xSnx/Ge type-I single QW cell for mid-wavelength infra-red modulators. Superlattices and Microstructures, 2015, 85, 629-637.	3.1	7
72	Performance evaluation of high-detectivity p-i-n infrared photodetector based on compressively-strained Ge _{0.964} Sn _{0.036} /Ge multiple quantum wells by quantum modelling. Semiconductor Science and Technology, 2015, 30, 085016.	2.0	14

#	Article	IF	CITATIONS
73	Application of coordinate transformation and finite differences method for electron and hole states calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 93-99.	2.7	10
74	Hole mobility in Ge/Si core/shell nanowires: What could be the optimum?. Applied Physics Letters, 2014, 105, .	3.3	7
75	Wave-function engineering and absorption spectra in Si0.16Ge0.84/Ge0.94Sn0.06/Si0.16Ge0.84strained on relaxed Si0.10Ge0.90type I quantum well. Journal of Applied Physics, 2014, 115, 033109.	2.5	18
76	Structural, electronic and thermodynamic properties of britholites Ca10â^'xLax(PO4)6â^'x(SiO4)xF2 (0â‰ ¤ â‰ ®): Experiment and theory. Materials Research Bulletin, 2014, 51, 210-216.	5.2	22
77	Modeling of electrical and optical characteristics of near room-temperature CdS/ZnSe based NIR photodetectors. Infrared Physics and Technology, 2014, 64, 33-39.	2.9	11
78	A multi-color CdS/ZnSe quantum well photodetector for mid- and long-wavelength infrared detection. Materials Science in Semiconductor Processing, 2014, 19, 83-88.	4.0	7
79	Numerical modeling of the InAs quantum dot with application of coordinate transformation and the finite difference method. Computer Physics Communications, 2014, 185, 1290-1298.	7.5	10
80	Electron transport through cubic InGaN/AlGaN resonant tunneling diodes. Computer Physics Communications, 2014, 185, 3119-3126.	7.5	9
81	Room temperature ferromagnetism in Cd-doped ZnO thin films through defect engineering. Journal of Alloys and Compounds, 2014, 598, 120-125.	5.5	16
82	Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1561-1565.	0.8	12
83	Modelling of the Quantum Transport in Strained Si/SiGe/Si Superlattices Based P-i-n Infrared Photodetectors for 1.3 - 1.55 l¼m Optical Communication. Modeling and Numerical Simulation of Material Science, 2014, 04, 37-52.	0.3	3
84	Intersubband resonant enhancement of the nonlinear optical properties in asymmetric (CdS/ZnSe)/X-BeTe based quantum wells. Optical Materials, 2013, 35, 875-880.	3.6	35
85	Linear and non-linear optical properties in symmetric and asymmetric double quantum wells. Optik, 2013, 124, 7044-7048.	2.9	25
86	Intersubband transitions in quantum well mid-infrared photodetectors. Infrared Physics and Technology, 2013, 60, 137-144.	2.9	16
87	Computation of the electronic structure and direct-gap absorption spectra in Ge-rich Si1â^'x Gex/Ge/Si1â^'xGex type-I quantum wells. European Physical Journal B, 2013, 86, 1.	1.5	7
88	Hybrid functional study of structural, electronic and magnetic properties of S-doped ZnO with and without neutral vacancy. Journal of Alloys and Compounds, 2013, 578, 602-608.	5.5	18
89	[<i>h h l</i>]Orientation dependence of optoelectronic properties in InAsN/GaSb quantum well laser diodes with W and M design. Semiconductor Science and Technology, 2013, 28, 065006.	2.0	5
90	Mn Concentration and Quantum Size Effects on Spin-Polarized Transport Through CdMnTe Based Magnetic Resonant Tunneling Diode. Journal of Nanoscience and Nanotechnology, 2012, 12, 8791-8796.	0.9	1

#	Article	IF	CITATIONS
91	Effect of pressure on the energy band gaps of wurtzite GaN and AlN and electronic properties of their ternary alloys AlxGa1â^'xN. Physica B: Condensed Matter, 2012, 407, 3604-3609.	2.7	8
92	Si/Si1â^'xGex/Si-based quantum wells infrared photodetector operating at 1.55μm. Superlattices and Microstructures, 2012, 52, 901-912.	3.1	1
93	Dependence of hole effective mass on nitrogen concentration in W-type strained InAs(N)/GaSb/InAs(N) quantum well lasers. European Physical Journal B, 2012, 85, 1.	1.5	10
94	Intersubband resonant enhancement of the nonlinear optical properties in asymmetric (CdS/ZnSe) based quantum wells. Superlattices and Microstructures, 2012, 51, 587-596.	3.1	5
95	A multi-color quantum well photodetector for mid- and long-wavelength infrared detection. Semiconductor Science and Technology, 2011, 26, 125019.	2.0	12
96	Calculation of band offsets in Cd1â^xXxTe alloys, X=Zn, Mg, Hg and Mn and magnetic effects in CdMnTe. Journal of Alloys and Compounds, 2011, 509, 7677-7683.	5.5	9
97	A theoretical study of band structure properties for Ill–V nitrides quantum wells. Superlattices and Microstructures, 2011, 50, 277-288.	3.1	1
98	Electrical field and temperature effects in 2D-2D resonant tunneling diodes based on cubic InGaN/AlGaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1544-1547.	0.8	2
99	Spin polarization and spin-dependent transmittance in Il–VI diluted magnetic semiconductorheterostructure. Journal of Magnetism and Magnetic Materials, 2011, 323, 334-339.	2.3	Ο
100	Formation of one-dimensional ordered alloy at step edges: An atomistic study of the (2×1) Ni/Pt alloy on the Pt(997) surface. Surface Science, 2011, 605, 917-922.	1.9	17
101	Spin-dependent transport in II-VI magnetic semiconductor resonant tunneling diode. Journal of Applied Physics, 2011, 110, 034303.	2.5	13
102	Interfaces as design tools for the InAs/GaSb/InSb short-period superlattice for mid-infrared emission. Semiconductor Science and Technology, 2011, 26, 095010.	2.0	5
103	Band Offset Calculation of Cd _{1â^'<i>x</i>} <i>Xx</i> Te/Cd _{1â^'<i>y</i>} <i>XyXyXXXXX<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X<i>X</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	/sub>Te 0.4	1
104	Intersubband Absorption and Optical Non Linearity in Asymmetric (CdS/ZnSe/BeTe)(ZnSe/BeTe) Quantum Wells. Sensor Letters, 2011, 9, 2299-2301.	0.4	2
105	Electronic Properties of GaSb Based Heterostructure for 3 μm Emission. Sensor Letters, 2011, 9, 2257-2260.	0.4	Ο
106	Engineering of Ga1â^`xInxAsySb1â^`y/GaSb quantum well for III-V based devices emitting near 2.7 μm. IOP Conference Series: Materials Science and Engineering, 2010, 13, 012005.	0.6	0
107	Theoretical investigation of intersubband transition energies and oscillator strength in CdS/SiO2 quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 146-150.	2.7	10
108	Numerical simulation of a coupling effect on electronic states in quantum dots. Superlattices and Microstructures, 2010, 48, 1-8.	3.1	10

#	Article	IF	CITATIONS
109	CHARACTERIZATION OF SURFACE DEFECTS THROUGH THE MODIFICATION OF THE INFRARED PROFILE OF ADMOLECULES: APPLICATION TO CO MOLECULES ADSORBED ON (100) MgO AND NaCl SURFACES. Surface Review and Letters, 2010, 17, 431-436.	1.1	0
110	Modelling the Cu mono-atomic wire formation on Pt vicinal surfaces using kinetic Monte Carlo simulations. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 085009.	2.0	7
111	Optical performances of InAs/GaSb/InSb short-period superlattice laser diode for mid-infrared emission. Journal of Applied Physics, 2010, 108, 093107.	2.5	14
112	Modelling of an InAs/GaSb/InSb short-period superlattice laser diode for mid-infrared emission by the k.p method. Journal Physics D: Applied Physics, 2010, 43, 325102.	2.8	14
113	Absorption coefficient of intersubband transition at 1.55 µm in (CdS/ZnSe)/BeTe quantum wells. Journal Physics D: Applied Physics, 2009, 42, 045101.	2.8	17
114	A theoretical study of laser structures based on dilute-nitride InAsN for mid-infrared operation. Semiconductor Science and Technology, 2009, 24, 085010.	2.0	11
115	Growth of perfect and smooth Ag and Co monatomic wires on Pt vicinal surfaces: A kinetic Monte Carlo study. Surface Science, 2009, 603, 22-26.	1.9	13
116	Probing defect species on real surfaces from the analysis of the spectral profile of admolecules. Surface Science, 2009, 603, 887-894.	1.9	0
117	Temperature effects on the growth of the Co adsorbates on Pt vicinal surface. Physics Procedia, 2009, 2, 865-872.	1.2	0
118	Theoretical study of the Ni growth on Pt stepped surfaces. Surface Science, 2009, 603, 2879-2887.	1.9	7
119	Adsorption of Pt on Ni(111) surface: introduction of an effective pair interaction model. Physics Procedia, 2009, 2, 853-858.	1.2	0
120	Modelling of strained ZnSSe on relaxed ZnSSe-based structures for blue light emission. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 564-567.	2.7	6
121	Numerical simulation of coupling effect on electronic states in quantum wires. European Physical Journal B, 2009, 67, 245-250.	1.5	7
122	Magnetocaloric properties of Cd-substituted perovskite-type manganese oxides. Journal of Alloys and Compounds, 2009, 467, 44-47.	5.5	11
123	Electronic, lattice vibration and mechanical properties of CdTe, ZnTe, MnTe, MgTe, HgTe and their ternary alloys. Semiconductor Science and Technology, 2009, 24, 095008.	2.0	35
124	Gate leakage properties in (Al2O3/HfO2/Al2O3) dielectric of MOS devices. Thin Solid Films, 2008, 517, 456-458.	1.8	9
125	Nitrogen effect on optical gain and radiative current density for mid-infrared InAs(N)/GaSb/InAs(N) quantum-well laser. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 489-493.	2.7	8
126	Current tunnelling through MOS devices. Materials Science and Engineering C, 2008, 28, 662-665.	7.3	5

#	Article	IF	CITATIONS
127	Simulation of p–i–n heterojunctions built on strain-compensated Si/Si0.40Ge0.60/Si multiple quantum wells for photodetection near 1.55µm. Thin Solid Films, 2008, 517, 388-390.	1.8	1
128	Optical gain calculation of mid-infrared InAsN/GaSb quantum-well laser for tunable absorption spectroscopy applications. Materials Science and Engineering C, 2008, 28, 751-754.	7.3	4
129	Coulomb interaction of electron gas in MQWs Si/Si1â^'xGex/Si. Materials Science and Engineering C, 2008, 28, 939-942.	7.3	1
130	Energy-band structure and optical gain in strained InAs(N)/GaSb/InAs(N) quantum well lasers Journal of Applied Physics, 2008, 104, .	2.5	19
131	Synthesis, structural, magnetic and electrical properties of La1â~'xCdxMnO3 manganites (0.1â‰æâ‰@.5). Journal of Alloys and Compounds, 2008, 450, 12-17. Current Tunnelling in MOS Devices with complimath	5.5	28
132	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E1"> <mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>Al</mml:mtext>mathvariant="bold">2</mml:mrow></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mtext mathvariant="bold">3</mml:mtext </mml:msub><mml:mcov><mml:mcov><mml:mtext> mathvariant="bold">3</mml:mtext></mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><mml:mcov><m< td=""><td>mrow><n< td=""><td>nml;mtext</td></n<></td></m<></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mcov></mml:mrow></mml:mrow></mml:mrow>	mrow> <n< td=""><td>nml;mtext</td></n<>	nml;mtext
133	mathvariant="bold">2	2.8	12
134	Calculations of electronic structure, elastic properties for YxGa1â^'xN and band offsets of YxGa1â^'xN/ScyGa1â^'yN heterointerfaces. Semiconductor Science and Technology, 2008, 23, 095019.	2.0	6
135	Magnetocaloric effect in layered perovskite manganese oxide La1.4(Sr1â^'xBax)1.6Mn2O7 (0â‰ ¤ â‰ 0 .6) bulk materials. Journal of Alloys and Compounds, 2007, 432, 30-33.	5.5	21
136	Elastic properties and optical phonon frequencies of zinc-blende ScxGa1â^'xN. Semiconductor Science and Technology, 2007, 22, 641-646.	2.0	17
137	Influence of the composition fluctuation and the disorder on the bowing band gap in semiconductor materials. Microelectronics Journal, 2007, 38, 860-870.	2.0	27
138	A novel quantum laser structure based on InAsN/GaSb system. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 592-594.	0.8	0
139	Electronic properties of zinc-blende Scx Ga1â^'xN. Physica Status Solidi (B): Basic Research, 2006, 243, 2780-2787.	1.5	17
140	Field effect on electron-hole recombination in Si/Si1â^'xGex/Si quantum wells having a W-like type II potential profile. Materials Science and Engineering C, 2006, 26, 214-217.	7.3	0
141	Modeling of the Stark effect in strained Ge0.6Si0.4/Si/Ge0.6Si0.4 resonant tunneling diodes with graded GexSi1â°x (0.3 <x<0) 2006,="" 737-740.<="" 9,="" and="" collector.="" emitter="" in="" materials="" processing,="" science="" semiconductor="" spacer="" td=""><td>4.0</td><td>0</td></x<0)>	4.0	0
142	Carrier transport and related phenomena in MOS devices. Materials Science in Semiconductor Processing, 2006, 9, 989-994.	4.0	2
143	Induced electrostatic confinement of electron gas in W-designed strain-compensated Si/Si1–xGex/Si type-II quantum wells. Journal of Luminescence, 2006, 121, 421-425.	3.1	1
144	Effect of nitrogen concentration on the electronic and vibrational properties of zinc-blende InNxP1-x(x < 0.01). European Physical Journal B, 2006, 51, 17-23.	1.5	5

MONCEF SAID

#	Article	IF	CITATIONS
145	Modelling of ZnSxSe1â^'x/ZnSySe1â^'yband offsets and QW for green–yellow applications. Journal of Physics Condensed Matter, 2006, 18, 3005-3016.	1.8	7
146	Field effect on optical recombination in Si/SiGe quantum heterostructures having U, W and M type II potential designs. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 470-474.	3.5	0
147	Electronic structure calculations for ZnSxSe1â^'x. Materials Science and Engineering C, 2005, 25, 691-694.	7.3	9
148	Wave function engineering in W designed strained-compensated Si/Si1â^'xGex/Si type II quantum wells for 1.55μm optical properties. Optical Materials, 2005, 27, 859-863.	3.6	11
149	Optoelectronic properties of zinc blende ZnSSe and ZnBeTe alloys. European Physical Journal B, 2005, 43, 3-9.	1.5	33
150	Electronic properties of intersubband transition in (CdS/ZnSe)/BeTe quantum wells. European Physical Journal B, 2005, 47, 167-170.	1.5	26
151	Strain-balanced Si1-xGex/Si typeÂll quantum wells for 1.55Âμm detection and emission. European Physical Journal B, 2005, 48, 151-156.	1.5	17
152	Modelisation of optoelectronic device based on Si/SiO2 emitting red light. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 479-482.	3.5	1
153	Modelling of visible and near infrared wavelength quantum well devices made of zinc-blende InxGa1ÂxN. Journal of Physics Condensed Matter, 2004, 16, 511-519.	1.8	8
154	Band offset calculations applied to III–V nitride quantum well device engineering. Superlattices and Microstructures, 2004, 36, 799-806.	3.1	4
155	Electronic structure calculations for Si/Si1â^'xGex multi-quantum well devices. Materials Science and Engineering C, 2003, 23, 959-963.	7.3	0
156	Electronic band parameters for zinc-blende Al1\$minus\$xGaxN. Journal of Physics Condensed Matter, 2002, 14, 7017-7026.	1.8	20
157	Stark effect modeling in strained n-type Si/Si1â^'xGex resonant tunneling heterostructures. Journal of Applied Physics, 2002, 91, 9170-9176.	2.5	25
158	Electric field effect on the spatially separated electron–hole recombination in an Si/Si1â^'xGex resonant tunneling heterostructure. Physica B: Condensed Matter, 2002, 322, 37-41.	2.7	4
159	Electronic structure and optical properties of Si1â^'xGex alloys. Physica B: Condensed Matter, 2002, 322, 225-235.	2.7	12
160	First-principles electronic structure of rare-earth arsenides. European Physical Journal B, 2001, 23, 191-199.	1.5	10
161	Electronic structure of rare earth arsenide/gallium arsenide superlattices. Solid State Communications, 1996, 100, 477-480.	1.9	7
162	Core level shifts at bcc transition metal surfaces deduced from the calculation of surface segregation energies. Surface Science, 1993, 287-288, 780-784.	1.9	7

#	Article	IF	CITATIONS
163	Surface core-level shifts in bcc transition metals deduced from segregation-energy calculations. Physical Review B, 1993, 47, 4722-4729.	3.2	11
164	Excited Acceptor States in Il–VI and III–V Semiconductors. Physica Status Solidi (B): Basic Research, 1990, 157, 311-321.	1.5	32
165	Excited states of acceptors in CdTe and ZnTe. Journal of Crystal Growth, 1990, 101, 488-492.	1.5	14
166	Electronic structure and angular resolved photoemission calculations for fcc and bcc silver surfaces. Vacuum, 1990, 41, 538-542.	3.5	4
167	Electronic structure of fcc and bcc close-packed silver surfaces. Physical Review B, 1988, 38, 8505-8507.	3.2	17
168	The influence of the central-cell potential on the higher excited acceptor states in ZnTe. Journal of Physics C: Solid State Physics, 1988, 21, 4637-4643.	1.5	6
169	Electronic Raman scattering from acceptors in ZnTe. Journal of Physics C: Solid State Physics, 1987, 20, 2917-2922.	1.5	7
170	Higher excited states of acceptors in cubic semiconductors. Physical Review B, 1987, 35, 687-695.	3.2	18
171	Higher excited states of acceptors in cubic semiconductors. Solid State Communications, 1986, 57, 417-419.	1.9	4
172	A nonempirical Heisenberg Hamiltonian for the study of conjugated hydrocarbons. Ground-state conformational studies. Journal of the American Chemical Society, 1984, 106, 571-579.	13.7	120
173	Excited-state properties of linear polyenes studied through a nonempirical Heisenberg Hamiltonian. Journal of the American Chemical Society, 1984, 106, 580-587.	13.7	97
174	Styrene cis—trans photoisomerisation treated through a Heisenberg non-empirical hamiltonian. Chemical Physics Letters, 1983, 102, 312-316.	2.6	15
175	Looking at chemistry as a spin ordering problem. Journal of the American Chemical Society, 1983, 105, 5244-5252.	13.7	69