Jeffrey L Brodsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5738526/publications.pdf

Version: 2024-02-01

184	12,613	60	106
papers	citations	h-index	g-index
188	188	188	11749
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	One step at a time: endoplasmic reticulum-associated degradation. Nature Reviews Molecular Cell Biology, 2008, 9, 944-957.	37.0	1,148
2	From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Molecular Biology of the Cell, 2016, 27, 424-433.	2.1	446
3	The Delicate Balance Between Secreted Protein Folding and Endoplasmic Reticulum-Associated Degradation in Human Physiology. Physiological Reviews, 2012, 92, 537-576.	28.8	339
4	Cleaning Up: ER-Associated Degradation to the Rescue. Cell, 2012, 151, 1163-1167.	28.9	308
5	Molecular Chaperones in the Yeast Endoplasmic Reticulum Maintain the Solubility of Proteins for Retrotranslocation and Degradation. Journal of Cell Biology, 2001, 153, 1061-1070.	5.2	294
6	The Action of Molecular Chaperones in the Early Secretory Pathway. Annual Review of Genetics, 2001, 35, 149-191.	7.6	279
7	A Stress-Responsive System for Mitochondrial Protein Degradation. Molecular Cell, 2010, 40, 465-480.	9.7	275
8	Protein quality control in the secretory pathway. Journal of Cell Biology, 2019, 218, 3171-3187.	5.2	264
9	Hsp70 Molecular Chaperone Facilitates Endoplasmic Reticulum-associated Protein Degradation of Cystic Fibrosis Transmembrane Conductance Regulator in Yeast. Molecular Biology of the Cell, 2001, 12, 1303-1314.	2.1	260
10	The Requirement for Molecular Chaperones during Endoplasmic Reticulum-associated Protein Degradation Demonstrates That Protein Export and Import Are Mechanistically Distinct. Journal of Biological Chemistry, 1999, 274, 3453-3460.	3.4	251
11	The Recognition and Retrotranslocation of Misfolded Proteins from the Endoplasmic Reticulum. Traffic, 2008, 9, 861-870.	2.7	250
12	Dissecting the ER-Associated Degradation of a Misfolded Polytopic Membrane Protein. Cell, 2008, 132, 101-112.	28.9	242
13	Distinct Machinery Is Required in Saccharomyces cerevisiae for the Endoplasmic Reticulum-associated Degradation of a Multispanning Membrane Protein and a Soluble Luminal Protein. Journal of Biological Chemistry, 2004, 279, 38369-38378.	3.4	232
14	Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). BioEssays, 2003, 25, 868-877.	2,5	210
15	Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Current Opinion in Cell Biology, 2011, 23, 464-475.	5.4	207
16	Hsp70 Molecular Chaperones: Emerging Roles in Human Disease and Identification of Small Molecule Modulators. Current Topics in Medicinal Chemistry, 2006, 6, 1215-1225.	2.1	199
17	Characterization of an ERAD Gene as VPS30/ATG6 Reveals Two Alternative and Functionally Distinct Protein Quality Control Pathways: One for Soluble Z Variant of Human α-1 Proteinase Inhibitor (A1PiZ) and Another for Aggregates of A1PiZ. Molecular Biology of the Cell, 2006, 17, 203-212.	2.1	191
18	Small Molecule Modulators of Endogenous and Co-chaperone-stimulated Hsp70 ATPase Activity. Journal of Biological Chemistry, 2004, 279, 51131-51140.	3.4	190

#	Article	IF	Citations
19	Regulation of Hsp70 Function by HspBP1. Molecular Cell, 2005, 17, 367-379.	9.7	185
20	The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. ELife, $2018, 7, \ldots$	6.0	160
21	The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. Journal of Cell Biology, 2005, 168, 389-399.	5.2	159
22	Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nature Chemical Biology, 2007, 3, 498-507.	8.0	156
23	Roles of Molecular Chaperones in Endoplasmic Reticulum (ER) Quality Control and ER-Associated Degradation (ERAD). Journal of Biochemistry, 2005, 137, 551-555.	1.7	151
24	Distinct Roles for the Hsp40 and Hsp90 Molecular Chaperones during Cystic Fibrosis Transmembrane Conductance Regulator Degradation in Yeast. Molecular Biology of the Cell, 2004, 15, 4787-4797.	2.1	149
25	Binding of a Small Molecule at a Protein–Protein Interface Regulates the Chaperone Activity of Hsp70–Hsp40. ACS Chemical Biology, 2010, 5, 611-622.	3.4	149
26	The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochemical Journal, 2007, 404, 353-363.	3.7	134
27	Nucleotide Exchange Factor for the Yeast Hsp70 Molecular Chaperone Ssa1p. Molecular and Cellular Biology, 2002, 22, 4677-4689.	2.3	133
28	Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorganic and Medicinal Chemistry, 2009, 17, 1527-1533.	3.0	128
29	Apolipoprotein B100 Exit from the Endoplasmic Reticulum (ER) Is COPII-dependent, and Its Lipidation to Very Low Density Lipoprotein Occurs Post-ER. Journal of Biological Chemistry, 2003, 278, 48051-48058.	3.4	123
30	The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochemical Journal, 2017, 474, 445-469.	3.7	123
31	Real-Time Fluorescence Detection of ERAD Substrate Retrotranslocation inÂaÂMammalian In Vitro System. Cell, 2007, 129, 943-955.	28.9	122
32	Checkpoints in ER-associated degradation: excuse me, which way to the proteasome?. Trends in Cell Biology, 2004, 14, 474-478.	7.9	119
33	Apoprotein B Degradation Is Promoted by the Molecular Chaperones hsp90 and hsp70. Journal of Biological Chemistry, 2001, 276, 24891-24900.	3.4	117
34	A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science, 2019, 365, 53-60.	12.6	114
35	Synthesis and Initial Evaluation of YM-08, a Blood-Brain Barrier Permeable Derivative of the Heat Shock Protein 70 (Hsp70) Inhibitor MKT-077, Which Reduces Tau Levels. ACS Chemical Neuroscience, 2013, 4, 930-939.	3.5	109
36	Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO Journal, 2004, 23, 2206-2215.	7.8	106

#	Article	IF	CITATIONS
37	Adapting to stress â€" chaperome networks in cancer. Nature Reviews Cancer, 2018, 18, 562-575.	28.4	105
38	Small Heat-Shock Proteins Select \hat{l} "F508-CFTR for Endoplasmic Reticulum-associated Degradation. Molecular Biology of the Cell, 2007, 18, 806-814.	2.1	104
39	HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Letters, 2002, 531, 339-342.	2.8	100
40	Chaperoning Endoplasmic Reticulum–Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033928.	5.5	100
41	Molecular pathogenesis of alpha-1-antitrypsin deficiency-associated liver disease: A meeting review. Hepatology, 2007, 45, 1313-1323.	7.3	95
42	A Precursor-specific Role for Hsp40/Hsc70 during Tail-anchored Protein Integration at the Endoplasmic Reticulum. Journal of Biological Chemistry, 2008, 283, 27504-27513.	3.4	95
43	Dependence of Endoplasmic Reticulum-associated Degradation on the Peptide Binding Domain and Concentration of BiP. Molecular Biology of the Cell, 2003, 14, 3437-3448.	2.1	94
44	Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorganic and Medicinal Chemistry, 2008, 16, 3291-3301.	3.0	90
45	Substrate-specific mediators of ER associated degradation (ERAD). Current Opinion in Cell Biology, 2009, 21, 516-521.	5.4	88
46	Specific \hat{l} ±-Arrestins Negatively Regulate <i>Saccharomyces cerevisiae</i> Pheromone Response by Down-Modulating the G-Protein-Coupled Receptor Ste2. Molecular and Cellular Biology, 2014, 34, 2660-2681.	2.3	87
47	Autophagy: an ER Protein Quality Control Process. Autophagy, 2006, 2, 135-137.	9.1	86
48	The proteolytic landscape of the yeast vacuole. Cellular Logistics, 2014, 4, e28023.	0.9	85
49	The Function of the Yeast Molecular Chaperone Sse1 Is Mechanistically Distinct from the Closely Related Hsp70 Family. Journal of Biological Chemistry, 2004, 279, 21992-22001.	3.4	84
50	The Endoplasmic Reticulum–associated Degradation of the Epithelial Sodium Channel Requires a Unique Complement of Molecular Chaperones. Molecular Biology of the Cell, 2010, 21, 1047-1058.	2.1	81
51	Specific Molecular Chaperone Interactions and an ATP-dependent Conformational Change Are Required during Posttranslational Protein Translocation into the Yeast ER. Molecular Biology of the Cell, 1998, 9, 3533-3545.	2.1	76
52	Overexpression of Yeast Hsp110 Homolog Sse1p Suppressesydj1-151Thermosensitivity and Restores Hsp90-dependent Activity. Molecular Biology of the Cell, 2002, 13, 2760-2770.	2.1	76
53	Species-Specific Elements in the Large T-Antigen J Domain Are Required for Cellular Transformation and DNA Replication by Simian Virus 40. Molecular and Cellular Biology, 2000, 20, 5749-5757.	2.3	75
54	Hsp70 Targets a Cytoplasmic Quality Control Substrate to the San1p Ubiquitin Ligase. Journal of Biological Chemistry, 2013, 288, 18506-18520.	3.4	74

#	Article	IF	Citations
55	The many intersecting pathways underlying apolipoprotein B secretion and degradation. Trends in Endocrinology and Metabolism, 2008, 19, 254-259.	7.1	73
56	Antimyeloma Effects of the Heat Shock Protein 70 Molecular Chaperone Inhibitor MAL3-101. Journal of Oncology, 2011, 2011, 1-11.	1.3	72
57	The activities and function of molecular chaperones in the endoplasmic reticulum. Seminars in Cell and Developmental Biology, 2007, 18, 751-761.	5.0	70
58	The Hsp110 Molecular Chaperone Stabilizes Apolipoprotein B from Endoplasmic Reticulum-associated Degradation (ERAD). Journal of Biological Chemistry, 2007, 282, 32665-32675.	3.4	66
59	ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease. Trends in Biochemical Sciences, 2021, 46, 630-639.	7.5	65
60	Degradation of Mutated Bovine Pancreatic Trypsin Inhibitor in the Yeast Vacuole Suggests Post-endoplasmic Reticulum Protein Quality Control. Journal of Biological Chemistry, 2004, 279, 15289-15297.	3.4	64
61	How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: The early history of ERAD. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2447-2457.	4.1	64
62	Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6757-6762.	7.1	63
63	Chemical Induction of Hsp70 Reduces α-Synuclein Aggregation in Neuroglioma Cells. ACS Chemical Biology, 2013, 8, 1460-1468.	3.4	61
64	Identification of an Inhibitor of hsc70-mediated Protein Translocation and ATP Hydrolysis. Journal of Biological Chemistry, 2001, 276, 910-914.	3.4	60
65	Protein disulfide isomerases contribute differentially to the endoplasmic reticulum–associated degradation of apolipoprotein B and other substrates. Molecular Biology of the Cell, 2012, 23, 520-532.	2.1	59
66	Golgi-associated Maturation of Very Low Density Lipoproteins Involves Conformational Changes in Apolipoprotein B, but Is Not Dependent on Apolipoprotein E. Journal of Biological Chemistry, 2007, 282, 19453-19462.	3.4	57
67	Identification of an Allosteric Small-Molecule Inhibitor Selective for the Inducible Form of Heat Shock Protein 70. Chemistry and Biology, 2014, 21, 1648-1659.	6.0	54
68	The yeast Hsp110, Sse1p, exhibits highâ€affinity peptide binding. FEBS Letters, 2008, 582, 2393-2396.	2.8	53
69	Selectivity of the molecular chaperone-specific immunosuppressive agent 15-deoxyspergualin. Biochemical Pharmacology, 1999, 57, 877-880.	4.4	50
70	Hsp70 and Hsp90 Multichaperone Complexes Sequentially Regulate Thiazide-sensitive Cotransporter Endoplasmic Reticulum-associated Degradation and Biogenesis. Journal of Biological Chemistry, 2013, 288, 13124-13135.	3.4	50
71	Heat Shock Protein 70 Inhibitors. 1. 2,5′-Thiodipyrimidine and 5-(Phenylthio)pyrimidine Acrylamides as Irreversible Binders to an Allosteric Site on Heat Shock Protein 70. Journal of Medicinal Chemistry, 2014, 57, 1188-1207.	6.4	50
72	Mutation of the ATP-Binding Pocket of <i>SSA1</i> Indicates That a Functional Interaction Between Ssa1p and Ydj1p Is Required for Post-translational Translocation Into the Yeast Endoplasmic Reticulum. Genetics, 2000, 156, 501-512.	2.9	50

#	Article	IF	CITATIONS
73	The Lhs1/GRP170 Chaperones Facilitate the Endoplasmic Reticulum-associated Degradation of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2013, 288, 18366-18380.	3.4	47
74	The HSP70 Modulator MAL3-101 Inhibits Merkel Cell Carcinoma. PLoS ONE, 2014, 9, e92041.	2.5	47
75	The Endosomal Protein-Sorting Receptor Sortilin Has a Role in Trafficking α-1 Antitrypsin. Genetics, 2012, 192, 889-903.	2.9	46
76	The Thiazide-sensitive NaCl Cotransporter Is Targeted for Chaperone-dependent Endoplasmic Reticulum-associated Degradation. Journal of Biological Chemistry, 2011, 286, 43611-43621.	3.4	45
77	Cysteine String Protein Monitors Late Steps in Cystic Fibrosis Transmembrane Conductance Regulator Biogenesis. Journal of Biological Chemistry, 2006, 281, 11312-11321.	3.4	44
78	Inhibition of Simian Virus 40 replication by targeting the molecular chaperone function and ATPase activity of T antigen. Virus Research, 2009, 141, 71-80.	2.2	43
79	J Domain Co-chaperone Specificity Defines the Role of BiP during Protein Translocation. Journal of Biological Chemistry, 2010, 285, 22484-22494.	3.4	43
80	Small Heat Shock Protein \hat{l}_{\pm} A-crystallin Regulates Epithelial Sodium Channel Expression. Journal of Biological Chemistry, 2007, 282, 28149-28156.	3.4	39
81	FK506 Binding Protein 8 Peptidylprolyl Isomerase Activity Manages a Late Stage of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Folding and Stability. Journal of Biological Chemistry, 2012, 287, 21914-21925.	3.4	37
82	Alpha-arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis. Journal of Cell Science, 2015, 128, 4220-34.	2.0	36
83	Endoplasmic reticulum–associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome. Journal of Biological Chemistry, 2017, 292, 12813-12827.	3.4	35
84	Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circulation Research, 2018, 122, 568-582.	4.5	35
85	A stalled retrotranslocation complex reveals physical linkage between substrate recognition and proteasomal degradation during ER-associated degradation. Molecular Biology of the Cell, 2013, 24, 1765-1775.	2.1	33
86	Combined chemical–genetic approach identifies cytosolic HSP70 dependence in rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9015-9020.	7.1	33
87	UBE3B Is a Calmodulin-regulated, Mitochondrion-associated E3 Ubiquitin Ligase. Journal of Biological Chemistry, 2017, 292, 2470-2484.	3.4	33
88	Use of Yeast as a Model System to Investigate Protein Conformational Diseases. Molecular Biotechnology, 2005, 30, 171-180.	2.4	31
89	Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations. Structure, 2015, 23, 1526-1537.	3.3	31
90	Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. International Journal of Molecular Sciences, 2020, 21, 452.	4.1	31

#	Article	IF	CITATIONS
91	Mutagenesis of a functional chimeric gene in yeast identifies mutations in the simian virus 40 large T antigen J domain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2002-2007.	7.1	29
92	A Soluble Sulfogalactosyl Ceramide Mimic Promotes î"F508 CFTR Escape from Endoplasmic Reticulum Associated Degradation. Chemistry and Biology, 2009, 16, 461-470.	6.0	29
93	CFTR Expression and ER-Associated Degradation in Yeast. , 2002, 70, 257-266.		28
94	Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L719-L733.	2.9	28
95	<i>ADD66</i> , a Gene Involved in the Endoplasmic Reticulum-associated Degradation of $\hat{l}\pm 1$ -Antitrypsin-Z in Yeast, Facilitates Proteasome Activity and Assembly. Molecular Biology of the Cell, 2007, 18, 3776-3787.	2.1	27
96	Insulin-Stimulated Degradation of Apolipoprotein B100: Roles of Class II Phosphatidylinositol-3-Kinase and Autophagy. PLoS ONE, 2013, 8, e57590.	2.5	27
97	Recent technical developments in the study of ER-associated degradation. Current Opinion in Cell Biology, 2014, 29, 82-91.	5.4	27
98	Targeting protein quality control pathways in breast cancer. BMC Biology, 2017, 15, 109.	3.8	27
99	Substrate Insolubility Dictates Hsp104-Dependent Endoplasmic-Reticulum-Associated Degradation. Molecular Cell, 2018, 70, 242-253.e6.	9.7	27
100	Chaperoning the maturation of the cystic fibrosis transmembrane conductance regulator. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L39-L42.	2.9	26
101	The Hsp40 Molecular Chaperone Ydj1p, Along With the Protein Kinase C Pathway, Affects Cell-Wall Integrity in the Yeast Saccharomyces cerevisiae. Genetics, 2007, 175, 1649-1664.	2.9	26
102	Expression of a Malarial Hsp70 Improves Defects in Chaperone-Dependent Activities in ssa1 Mutant Yeast. PLoS ONE, 2011, 6, e20047.	2.5	26
103	Differential requirements of novel A1PiZ degradation deficient (ADD) genes in ER-associated protein degradation. Journal of Cell Science, 2003, 116, 2361-2373.	2.0	25
104	The BiP Molecular Chaperone Plays Multiple Roles during the Biogenesis of TorsinA, an AAA+ ATPase Associated with the Neurological Disease Early-onset Torsion Dystonia. Journal of Biological Chemistry, 2014, 289, 12727-12747.	3.4	25
105	<i>N</i> -Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Molecular Pharmacology, 2017, 92, 564-575.	2.3	25
106	ESCRT regulates surface expression of the Kir2.1 potassium channel. Molecular Biology of the Cell, 2014, 25, 276-289.	2.1	24
107	The degradation pathway of a model misfolded protein is determined by aggregation propensity. Molecular Biology of the Cell, 2018, 29, 1422-1434.	2.1	24
108	Vesicular Trafficking of Hepatic Apolipoprotein B100 and Its Maturation to Very Low-Density Lipoprotein ParticlesStudies from Cells and Cell-free Systems. Trends in Cardiovascular Medicine, 2004, 14, 127-132.	4.9	23

#	Article	IF	CITATIONS
109	Interactions between intersubunit transmembrane domains regulate the chaperone-dependent degradation of an oligomeric membrane protein. Biochemical Journal, 2017, 474, 357-376.	3.7	23
110	Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics. PLoS ONE, 2016, 11, e0163615.	2.5	23
111	Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates. Molecular Biology of the Cell, 2017, 28, 2076-2090.	2.1	22
112	Localization of the BiP Molecular Chaperone with Respect to Endoplasmic Reticulum Foci Containing the Cystic Fibrosis Transmembrane Conductance Regulator in Yeast. Journal of Histochemistry and Cytochemistry, 2003, 51, 545-548.	2.5	21
113	Design of a fluorescence polarization assay platform for the study of human Hsp70. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3749-3751.	2.2	21
114	Dihydropyrimidinones and -thiones with improved activity against human polyomavirus family members. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5087-5091.	2.2	21
115	The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules, 2021, 11, 1185.	4.0	21
116	The Mammalian Hsp40 ERdj3 Requires Its Hsp70 Interaction and Substrate-binding Properties to Complement Various Yeast Hsp40-dependent Functions. Journal of Biological Chemistry, 2009, 284, 32462-32471.	3.4	19
117	A Regulator of Secretory Vesicle Size, Kelch-Like Protein 12, Facilitates the Secretion of Apolipoprotein B100 and Very-Low-Density Lipoproteins—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 251-254.	2.4	19
118	Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain Coupling, and Specific Chaperone Functions. Journal of Molecular Biology, 2015, 427, 2948-2965.	4.2	18
119	A screen for modulators of large T antigen's ATPase activity uncovers novel inhibitors of Simian Virus 40 and BK virus replication. Antiviral Research, 2012, 96, 70-81.	4.1	17
120	Symmetry breaking during homodimeric assembly activates an E3 ubiquitin ligase. Scientific Reports, 2017, 7, 1789.	3.3	17
121	Epithelial sodium channel biogenesis and quality control in the early secretory pathway. Current Opinion in Nephrology and Hypertension, 2018, 27, 364-372.	2.0	17
122	Select \hat{l}_{\pm} -arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model. Journal of Biological Chemistry, 2018, 293, 11006-11021.	3.4	17
123	Synthesis and evaluation of esterified Hsp70 agonists in cellular models of protein aggregation and folding. Bioorganic and Medicinal Chemistry, 2019, 27, 79-91.	3.0	17
124	Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?. American Journal of Physiology - Renal Physiology, 2011, 301, F1-F11.	2.7	16
125	Compensation of select proteostasis networks after Hsp70 inhibition in cancer. Journal of Cell Science, 2018, 131, .	2.0	16
126	Hsp104 facilitates the endoplasmicâ€reticulum–associated degradation of diseaseâ€associated and aggregationâ€prone substrates. Protein Science, 2019, 28, 1290-1306.	7.6	16

#	Article	IF	Citations
127	Post-translational import of protein into the endoplasmic reticulum of a trypanosome: an <i>in vitro</i> system for discovery of anti-trypanosomal chemical entities. Biochemical Journal, 2009, 419, 507-517.	3.7	15
128	Structural Basis for the Inhibitory Effects of Ubistatins in the Ubiquitin-Proteasome Pathway. Structure, 2017, 25, 1839-1855.e11.	3.3	15
129	Stability and function of the Sec61 translocation complex depends on the Sss1p tail-anchor sequence. Biochemical Journal, 2011, 436, 291-303.	3.7	13
130	The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK). Journal of Biological Chemistry, 2018, 293, 3201-3217.	3.4	13
131	Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control. Molecular Biology of the Cell, 2020, 31, 2669-2686.	2.1	13
132	High-Throughput Screening Identifies a Bisphenol Inhibitor of SV40 Large T Antigen ATPase Activity. Journal of Biomolecular Screening, 2012, 17, 194-203.	2.6	12
133	A Combination Therapy for Cystic Fibrosis. Cell, 2015, 163, 17.	28.9	12
134	Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 762-771.	2.4	12
135	Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised. ELife, 2021, 10, .	6.0	12
136	Assays to Measure ER-Associated Degradation in Yeast. Methods in Molecular Biology, 2012, 832, 505-518.	0.9	12
137	Tipping the Delicate Balance: Defining How Proteasome Maturation Affects the Degradation of a Substrate for Autophagy and Endoplasmic Reticulum Associated Degradation (ERAD). Autophagy, 2007, 3, 623-625.	9.1	11
138	Identification of Hsp70 modulators through modeling of the substrate binding domain. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3828-3831.	2.2	11
139	A novel high-throughput yeast genetic screen for factors modifying protein levels of the Early-Onset Torsion Dystonia-associated variant torsinAΔE. DMM Disease Models and Mechanisms, 2017, 10, 1129-1140.	2.4	11
140	The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice. JCI Insight, 2022, 7, .	5.0	11
141	Mechanisms Underlying the Cellular Clearance of Antitrypsin Z: Lessons from Yeast Expression Systems. Proceedings of the American Thoracic Society, 2010, 7, 363-367.	3.5	10
142	The Special Delivery of a Tail-Anchored Protein: Why It Pays to Use a Dedicated Courier. Molecular Cell, 2010, 40, 5-7.	9.7	10
143	Synthesis and structure–activity relationships of small molecule inhibitors of the simian virus 40 T antigen oncoprotein, an anti-polyomaviral target. Bioorganic and Medicinal Chemistry, 2014, 22, 6490-6502.	3.0	10
144	Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast <i>Saccharomyces cerevisiae</i> . Physiological Genomics, 2015, 47, 198-214.	2.3	10

#	Article	IF	CITATIONS
145	Proteomic analysis of the amyloid precursor protein fragment C99: expression in yeast. Analytical Biochemistry, 2007, 370, 162-170.	2.4	9
146	Just a Trim, Please: Refining ER Degradation through Deubiquitination. Cell, 2013, 154, 479-481.	28.9	9
147	Characterization of an M28 metalloprotease family member residing in the yeast vacuole. FEMS Yeast Research, 2013, 13, 471-484.	2.3	9
148	The threads that tie protein-folding diseases. DMM Disease Models and Mechanisms, 2014, 7, 3-4.	2.4	9
149	Substrate ubiquitination retains misfolded membrane proteins in the endoplasmic reticulum for degradation. Cell Reports, 2021, 36, 109717.	6.4	9
150	Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics, 2018, 209, 637-650.	2.9	9
151	In Vitro Reconstitution of the Selection, Ubiquitination, and Membrane Extraction of a Polytopic ERAD Substrate. Methods in Molecular Biology, 2010, 619, 365-376.	0.9	8
152	Guardians of the ERAD Galaxy. Cell, 2017, 171, 267-268.	28.9	7
153	S-Nitrosylation of CHIP Enhances F508Del-CFTR Maturation. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 765-775.	2.9	7
154	Synthesis and Selective Functionalization of Thiadiazine 1,1-Dioxides with Efficacy in a Model of Huntington's Disease. ACS Medicinal Chemistry Letters, 2020, 11, 984-990.	2.8	7
155	A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities. Cell Chemical Biology, 2022, 29, 1303-1316.e3.	5.2	7
156	The Effect of Structure and Mechanism of the Hsp70 Chaperone on the Ability to Identify Chemical Modulators and Therapeutics. Topics in Medicinal Chemistry, 2015, , 81-129.	0.8	6
157	Thumb domains of the three epithelial Na+ channel subunits have distinct functions. Journal of Biological Chemistry, 2018, 293, 17582-17592.	3.4	6
158	Complementary computational and experimental evaluation of missense variants in the ROMK potassium channel. PLoS Computational Biology, 2020, 16, e1007749.	3.2	6
159	Improved correction of F508del-CFTR biogenesis with a folding facilitator and an inhibitor of protein ubiquitination. Bioorganic and Medicinal Chemistry Letters, 2021, 48, 128243.	2.2	6
160	Linking chanelopathies with endoplasmic reticulum associated degradation. Channels, 2017, 11, 499-501.	2.8	5
161	Exploring the Functional Consequences of Protein Backbone Alteration in Ubiquitin through Native Chemical Ligation. ChemBioChem, 2019, 20, 2346-2350.	2.6	5
162	The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation. Molecular and Cellular Proteomics, 2020, 19, 1896-1909.	3.8	5

#	Article	IF	CITATIONS
163	Unlocking the door for ERAD. Nature Cell Biology, 2020, 22, 263-265.	10.3	5
164	Heat Shock Protein 70 as a Sex-Skewed Regulator of \hat{l}_{\pm} -Synucleinopathy. Neurotherapeutics, 2021, 18, 2541-2564.	4.4	5
165	Nucleotide Exchange Factors for Hsp70 Molecular Chaperones. , 2007, , 1-12.		5
166	Entry into the Endoplasmic Reticulum: Protein Translocation, Folding and Quality Control. , 2009, , $119\text{-}142$.		5
167	Organelle and proteome quality control mechanisms: how cells are able to keep calm and carry on. Molecular Biology of the Cell, 2014, 25, 733-734.	2.1	4
168	Harmonizing Experimental Data with Modeling to Predict Membrane Protein Insertion in Yeast. Biophysical Journal, 2019, 117, 668-678.	0.5	4
169	Distinct classes of misfolded proteins differentially affect the growth of yeast compromised for proteasome function. FEBS Letters, 2021, 595, 2383-2394.	2.8	4
170	Regulation of Hsp70 Function: Hsp40 Co-Chaperones and Nucleotide Exchange Factors., 2007,, 209-227.		4
171	SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochemical Journal, 2021, , .	3.7	4
172	Paraoxonase 2 is an ER chaperone that regulates the epithelial Na ⁺ channel. American Journal of Physiology - Cell Physiology, 2022, 322, C111-C121.	4.6	4
173	Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis. Molecular Biology of the Cell, 2022, 33, mbcE21090436.	2.1	4
174	An in vitro assay for the selective endoplasmic reticulum associated degradation of an unglycosylated secreted protein. Methods, 2005, 35, 354-359.	3.8	3
175	Design of a Flexible Cell-Based Assay for the Evaluation of Heat Shock Protein 70 Expression Modulators. Assay and Drug Development Technologies, 2011, 9, 236-246.	1.2	3
176	Synthesis and evaluation of bifunctional PTP4A3 phosphatase inhibitors activating the ER stress pathway. Bioorganic and Medicinal Chemistry Letters, 2021, 46, 128167.	2.2	3
177	A positive genetic selection for transmembrane domain mutations in HRD1 underscores the importance of Hrd1 complex integrity during ERAD. Current Genetics, 2022, 68, 227-242.	1.7	3
178	Reconstitution of Endoplasmic Reticulum-Associated Degradation Using Yeast Membranes and Cytosol., 2005, 301, 175-184.		2
179	Ubiquitination of disease-causing CFTR variants in a microsome-based assay. Analytical Biochemistry, 2020, 604, 113829.	2.4	2
180	TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119073.	4.1	2

#	Article	IF	CITATIONS
181	The Role of BiP/Kar2p in the Translocation of Proteins Across the ER Membrane. The Enzymes, 2007, , 245-273.	1.7	1
182	The Unfolded Protein Response: A Multifaceted Regulator of Lipid and Lipoprotein Metabolism. Cell Metabolism, 2012, 16, 407-408.	16.2	1
183	Proteasome activity modulates amyloid toxicity. FEMS Yeast Research, 2022, 22, .	2.3	1
184	Epithelial Ion Channel Folding and ER-Associated Degradation (ERAD). Physiology in Health and Disease, 2020, , 207-247.	0.3	0