Yidong Hou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5737813/yidong-hou-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

77	7,036 citations	36	78
papers		h-index	g-index
78	8,106 ext. citations	10 .2	6
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
77	Carbon encapsulated bimetallic FeCo nanoalloys for one-step hydroxylation of benzene to phenol. <i>Applied Catalysis A: General</i> , 2022 , 633, 118499	5.1	1
76	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination <i>Chemical Reviews</i> , 2022 ,	68.1	27
75	Unique functionalities of carbon shells coating on ZnFe2O4 for enhanced photocatalytic hydroxylation of benzene to phenol. <i>Applied Catalysis B: Environmental</i> , 2022 , 304, 120999	21.8	5
74	One-Pot Synthesis of CoS2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting <i>ChemSusChem</i> , 2022 ,	8.3	4
73	Carbon-coated ZnFe2O4 nanoparticles as an efficient, robust and recyclable catalyst for photocatalytic ozonation of organic pollutants. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107419	6.8	1
72	Tailored poly-heptazine units in carbon nitride for activating peroxymonosulfate to degrade organic contaminants with visible light. <i>Applied Catalysis B: Environmental</i> , 2022 , 311, 121341	21.8	6
71	Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts <i>Nature Communications</i> , 2022 , 13, 2230	17.4	8
70	The Hole-Tunneling Heterojunction of Hematite-Based Photoanodes Accelerates Photosynthetic Reaction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16009-16018	16.4	8
69	The Hole-Tunneling Heterojunction of Hematite-Based Photoanodes Accelerates Photosynthetic Reaction. <i>Angewandte Chemie</i> , 2021 , 133, 16145-16154	3.6	O
68	An ultrathin TiO2 interfacial layer enhancing the performance of an FeVO4 photoanode for water splitting. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 261-266	5.8	3
67	Well-defined CoS cages enable the separation of photoexcited charges to promote visible-light CO reduction. <i>Nanoscale</i> , 2021 , 13, 18070-18076	7.7	13
66	Photocatalytic H2 evolution integrated with selective amines oxidation promoted by NiS2 decorated CdS nanosheets. <i>Journal of Catalysis</i> , 2021 , 400, 347-354	7.3	13
65	On-Surface Polymerization of In-Plane Highly Ordered Carbon Nitride Nanosheets toward Photocatalytic Mineralization of Mercaptan Gas. <i>Advanced Materials</i> , 2021 , 33, e2101466	24	25
64	Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over BiWO. <i>Chemosphere</i> , 2021 , 283, 131256	8.4	18
63	Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation. <i>Chemical Engineering Journal</i> , 2021 , 424, 130296	14.7	26
62	Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO4 nanorods. <i>Catalysis Science and Technology</i> , 2021 , 11, 5931-5937	5.5	4
61	All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10270-10276	13	43

(2018-2020)

60	Fabrication of hierarchical Co3O4@CdIn2S4 pl heterojunction photocatalysts for improved CO2 reduction with visible light. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7177-7183	13	87
59	Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 4113-4121	6.7	37
58	N-Rich Carbon Catalysts with Economic Feasibility for the Selective Oxidation of Hydrogen Sulfide to Sulfur. <i>Environmental Science & Environmental Sc</i>	10.3	7
57	Selective Hydroxylation of Benzene to Phenol over Fe Nanoparticles Encapsulated within N-Doped Carbon Shells. <i>ACS Applied Nano Materials</i> , 2020 , 3, 9192-9199	5.6	14
56	Photodeposited CoO as highly active phases to boost water oxidation on BiVO4/WO3 photoanode. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 25652-25661	6.7	14
55	Magnetic Hollow Spheres Assembled from Graphene-Encapsulated Nickel Nanoparticles for Efficient Photocatalytic CO2 Reduction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7670-7678	6.1	44
54	MOF-derived hierarchical hollow spheres composed of carbon-confined Ni nanoparticles for efficient CO2 methanation. <i>Catalysis Science and Technology</i> , 2019 , 9, 731-738	5.5	56
53	Nanoconfined Growth of Carbon-Encapsulated Cobalts as Cocatalysts for Photocatalytic Hydrogen Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14023-14030	8.3	14
52	LiCl as Phase-Transfer Catalysts to Synthesize Thin Co P Nanosheets for Oxygen Evolution Reaction. <i>ChemSusChem</i> , 2019 , 12, 1911-1915	8.3	13
51	Spinel-Type Mixed Metal Sulfide NiCo2S4 for Efficient Photocatalytic Reduction of CO2 with Visible Light. <i>ChemCatChem</i> , 2019 , 11, 5513-5518	5.2	13
50	Branch-like ZnSDETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26877-26883	13	57
49	Enhanced Photocatalytic Ozonation of Phenol by Ag/ZnO Nanocomposites. <i>Catalysts</i> , 2019 , 9, 1006	4	11
48	Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 481-489	21.8	65
47	Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. <i>Energy and Environmental Science</i> , 2018 , 11, 294-298	35.4	124
46	Reduced Graphene Oxide-Cadmium Sulfide Nanorods Decorated with Silver Nanoparticles for Efficient Photocatalytic Reduction Carbon Dioxide Under Visible Light. <i>ChemCatChem</i> , 2018 , 10, 1627-1	634	55
45	Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 223-234	21.8	159
44	Perovskite Oxide LaNiO Nanoparticles for Boosting H Evolution over Commercial CdS with Visible Light. <i>Chemistry - A European Journal</i> , 2018 , 24, 18512-18517	4.8	51
43	Enhanced visible light photocatalysis of TiO2 by Co-modification with Eu and Au nanoparticles. <i>Solid State Sciences</i> , 2018 , 83, 181-187	3.4	23

42	Photocatalytic CO2 reduction promoted by uniform perovskite hydroxide CoSn(OH)6 nanocubes. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 1009-1016	21.8	75
41	Bioinspired cobalt cubanes with tunable redox potentials for photocatalytic water oxidation and CO reduction. <i>Beilstein Journal of Organic Chemistry</i> , 2018 , 14, 2331-2339	2.5	1
40	Assembly of protonated mesoporous carbon nitrides with co-catalytic [MoS] clusters for photocatalytic hydrogen production. <i>Chemical Communications</i> , 2017 , 53, 13221-13224	5.8	33
39	Efficient photoelectrochemical hydrogen production over p-Si nanowire arrays coupled with molybdenumBulfur clusters. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 2832-2838	6.7	13
38	Enhanced selective photocatalytic CO 2 reduction into CO over Ag/CdS nanocomposites under visible light. <i>Applied Surface Science</i> , 2017 , 391, 572-579	6.7	82
37	Layering MoS2 on soft hollow g-C3N4 nanostructures for photocatalytic hydrogen evolution. <i>Applied Catalysis A: General</i> , 2016 , 521, 2-8	5.1	106
36	Microwave-assisted fabrication of porous hematite photoanodes for efficient solar water splitting. <i>Chemical Communications</i> , 2016 , 52, 6888-91	5.8	29
35	3D arrays of molybdenum sulphide nanosheets on Mo meshes: Efficient electrocatalysts for hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2015 , 174, 653-659	6.7	28
34	Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 1-8	21.8	287
33	NaF-assisted hydrothermal synthesis of Ti-doped hematite nanocubes with enhanced photoelectrochemical activity for water splitting. <i>Applied Surface Science</i> , 2015 , 359, 805-811	6.7	25
32	Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. <i>ACS Applied Materials & Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light.</i>	9.5	212
31	Cobalt sulfide modified graphitic carbon nitride semiconductor for solar hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 11873-11879	6.7	76
30	Water oxidation electrocatalysis by a zeolitic imidazolate framework. <i>Nanoscale</i> , 2014 , 6, 9930-4	7.7	128
29	Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light. <i>Applied Catalysis B: Environmental</i> , 2014 , 156-157, 122-127	21.8	165
28	Integration of [(Co(bpy)] + electron mediator with heterogeneous photocatalysts for COI conversion. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2468-74	4.5	30
27	Facile synthesis of defect-mediated TiO2⊠ with enhanced visible light photocatalytic activity. Journal of Materials Chemistry A, 2013 , 1, 10099	13	82
26	Layered nanojunctions for hydrogen-evolution catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3621-5	16.4	713
25	Ionic Liquid Co-catalyzed Artificial Photosynthesis of CO. <i>Scientific Reports</i> , 2013 , 3,	4.9	57

(2008-2013)

24	Layered Nanojunctions for Hydrogen-Evolution Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 3709-3713	3.6	99
23	Efficient visible-light-induced photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over nanocrystalline PbBi2Nb2O9. <i>Journal of Catalysis</i> , 2012 , 290, 13-17	7:3	59
22	Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. <i>Chemical Science</i> , 2012 , 3, 443-446	9.4	232
21	Photoelectrocatalysis and electrocatalysis on silicon electrodes decorated with cubane-like clusters. <i>Journal of Photonics for Energy</i> , 2012 , 2, 026001	1.2	16
20	Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays. <i>Chemical Communications</i> , 2011 , 47, 2613-5	5.8	37
19	Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. <i>Nature Materials</i> , 2011 , 10, 434-8	27	556
18	A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 222, 25	4·7 8-262	32
17	Effects of sintering temperature on physicochemical properties and photocatalytic activity of titanate nanotubes modified with sulfuric acid. <i>Powder Technology</i> , 2011 , 214, 451-457	5.2	13
16	Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution 2011 ,		1
15	Controlled Directional Growth of TiO[sub 2] Nanotubes. <i>Journal of the Electrochemical Society</i> , 2010 , 157, E69	3.9	14
14	Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in EReactors. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11162-11168	3.8	22
13	Synthesis, characterization and photocatalytic activity of I-Ga2O3 nanostructures. <i>Powder Technology</i> , 2010 , 203, 440-446	5.2	56
12	Photocatalytic decomposition of benzene by porous nanocrystalline ZnGa2O4 with a high surface area. <i>Environmental Science & Environmental Science & E</i>	10.3	47
11	Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1680-1	16.4	1418
10	The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation. <i>Journal of Catalysis</i> , 2008 , 255, 59-67	7.3	172
9	Degradation of benzene over a zinc germanate photocatalyst under ambient conditions. Environmental Science & Environmental Sc	10.3	117
9	Degradation of benzene over a zinc germanate photocatalyst under ambient conditions.	10.3	117 94

6	Photocatalytic performance of 🖟 🖟, and EGa2O3 for the destruction of volatile aromatic pollutants in air. <i>Journal of Catalysis</i> , 2007 , 250, 12-18	7.3	233
5	Study of relationship between surface transient photoconductivity and liquid-phase photocatalytic activity of titanium dioxide. <i>Materials Chemistry and Physics</i> , 2007 , 102, 53-59	4.4	20
4	Efficient decomposition of benzene over a beta-Ga2O3 photocatalyst under ambient conditions. <i>Environmental Science & Environmental Science & Environm</i>	10.3	162
3	Photocatalytic activity of a hierarchically macro/mesoporous titania. <i>Langmuir</i> , 2005 , 21, 2552-9	4	414
2	A Highly Crystallized Hexagonal BCN Photocatalyst with Superior Anticorrosion Properties. <i>Advanced Optical Materials</i> ,2200282	8.1	
1	Facile fabrication of oxygen-doped carbon nitride with enhanced visible-light photocatalytic	2.8	