Masanori Okaniwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737631/publications.pdf

Version: 2024-02-01

471509 580821 1,356 32 17 25 citations h-index g-index papers 35 35 35 2105 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nature Materials, 2022, 21, 710-720.	27.5	114
2	TAK-676: A Novel Stimulator of Interferon Genes (STING) Agonist Promoting Durable IFN-dependent Antitumor Immunity in Preclinical Studies. Cancer Research Communications, 2022, 2, 489-502.	1.7	5
3	Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as <i>Plasmodium</i> Cytoplasmic Prolyl-tRNA Synthetase Inhibitors. ACS Infectious Diseases, 2021, 7, 1680-1689.	3.8	14
4	New Series of Potent Allosteric Inhibitors of Deoxyhypusine Synthase. ACS Medicinal Chemistry Letters, 2020, 11, 1645-1652.	2.8	7
5	Discovery of Novel Allosteric Inhibitors of Deoxyhypusine Synthase. Journal of Medicinal Chemistry, 2020, 63, 3215-3226.	6.4	21
6	Design and synthesis of selective CDK8/19 dual inhibitors: Discovery of 4,5-dihydrothieno[3′,4′:3,4]benzo[1,2-d]isothiazole derivatives. Bioorganic and Medicinal Chemistry, 2017, 25, 2336-2350.	3.0	30
7	A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell, 2017, 31, 424-435.	16.8	138
8	Discovery and pharmacological characterization of a new class of prolyl-tRNA synthetase inhibitor for anti-fibrosis therapy. PLoS ONE, 2017, 12, e0186587.	2.5	20
9	Abstract IA27: A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. , 2017, , .		O
10	Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature, 2016, 534, 272-276.	27.8	358
10	Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature, 2016, 534, 272-276. Design and synthesis of fused bicyclic inhibitors targeting the L5 loop site of centromere-associated protein E. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4296-4300.	27.8	358
	Design and synthesis of fused bicyclic inhibitors targeting the L5 loop site of centromere-associated		358 4 1
11	Design and synthesis of fused bicyclic inhibitors targeting the L5 loop site of centromere-associated protein E. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4296-4300.		4
11 12	Design and synthesis of fused bicyclic inhibitors targeting the L5 loop site of centromere-associated protein E. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4296-4300. Abstract 2147: Overcoming mTOR resistance mutations with a new generation mTOR inhibitor., 2016, ,.	2.2	1
11 12 13	Design and synthesis of fused bicyclic inhibitors targeting the L5 loop site of centromere-associated protein E. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4296-4300. Abstract 2147: Overcoming mTOR resistance mutations with a new generation mTOR inhibitor., 2016, , . ATPS-94THIRD GENERATION mTOR INHIBITORS IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v39.2-v39. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic	2.2	1 0
11 12 13	Design and synthesis of fused bicyclic inhibitors targeting the L5 loop site of centromere-associated protein E. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4296-4300. Abstract 2147: Overcoming mTOR resistance mutations with a new generation mTOR inhibitor., 2016,,. ATPS-94THIRD GENERATION mTOR INHIBITORS IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v39.2-v39. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nature Communications, 2015, 6, 7668. Synthetic Studies on Centromere-Associated Protein-E (CENP-E) Inhibitors: 2. Application of Electrostatic Potential Map (EPM) and Structure-Based Modeling to Imidazo [1,2- <i>>a</i> >jpyridine	1.2 12.8	4 1 0
11 12 13 14	Design and synthesis of fused bicyclic inhibitors targeting the L5 loop site of centromere-associated protein E. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4296-4300. Abstract 2147: Overcoming mTOR resistance mutations with a new generation mTOR inhibitor., 2016, ,. ATPS-94THIRD GENERATION mTOR INHIBITORS IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v39.2-v39. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nature Communications, 2015, 6, 7668. Synthetic Studies on Centromere-Associated Protein-E (CENP-E) Inhibitors: 2. Application of Electrostatic Potential Map (EPM) and Structure-Based Modeling to Imidazo[1,2-<1>a< 1> pyridine Derivatives as Anti-Tumor Agents. Journal of Medicinal Chemistry, 2015, 58, 8036-8053.	1.2 12.8 6.4	4 1 0 137 34

#	Article	IF	Citations
19	Synthetic studies of centromere-associated protein-E (CENP-E) inhibitors: 1.Exploration of fused bicyclic core scaffolds using electrostatic potential map. Bioorganic and Medicinal Chemistry, 2013, 21, 5488-5502.	3.0	21
20	Antitumor Activity of the Selective Pan-RAF Inhibitor TAK-632 in BRAF Inhibitor-Resistant Melanoma. Cancer Research, 2013, 73, 7043-7055.	0.9	102
21	Abstract C146: Combination treatment with the investigational RAF kinase inhibitor MLN2480 and the investigational MEK kinase inhibitor TAK-733 inhibits the growth of BRAF mutant and RAS mutant preclinical models of melanoma and CRC , 2013, , .		1
22	Abstract 3407: A novel CENP-E-selective inhibitor exhibits potent anti-tumor efficacy by two distinct mechanisms of action dependent on spindle assembly checkpoint activity, 2013, , .		0
23	Use of combination treatment with the investigational RAF kinase inhibitor MLN2480 and the investigational MEK kinase inhibitor TAK-733 on the growth of BRAF-mutant and RAS-mutant preclinical models of melanoma and CRC Journal of Clinical Oncology, 2013, 31, e13529-e13529.	1.6	2
24	Abstract C255: Discovery of TAK-632: A selective kinase inhibitor of pan-RAF with potent antitumor activity against BRAF and NRAS mutant melanomas, 2013, , .		1
25	Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors: 2. Synthesis and characterization of a novel imide-type prodrug for improving oral absorption. Bioorganic and Medicinal Chemistry, 2012, 20, 4680-4692.	3.0	8
26	Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors: 3. Evaluation of 5-amino-linked thiazolo[5,4-d]pyrimidine and thiazolo[5,4-b]pyridine derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 5600-5615.	3.0	12
27	Design and Synthesis of Novel DFG-Out RAF/Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Inhibitors. 1. Exploration of [5,6]-Fused Bicyclic Scaffolds. Journal of Medicinal Chemistry, 2012, 55, 3452-3478.	6.4	58
28	Aluminum-Controlled Reactivity and Diastereoselectivity toward Radical Reactions of Optically Active Aldimines with Metallic Samarium. Journal of Organic Chemistry, 2001, 66, 1283-1286.	3.2	30
29	Enantioselective addition of diethylzinc to aldehydes with novel chiral C2-symmetric dimeric ligands. Tetrahedron Letters, 2000, 41, 1047-1050.	1.4	15
30	Samarium-promoted Diastereoselective Reductive Coupling of Optically Active Imines. Synlett, 1999, 1999, 537-540.	1.8	29
31	Diastereoselective allylation and alkylation of optically active imines with metallic samarium and a catalytic amount of iodine. Tetrahedron, 1999, 55, 13947-13956.	1.9	43
32	Diastereoselective Allylation of Optically Active Imines with Metallic Samarium. Synlett, 1998, 1998, 835-836.	1.8	25