
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/573760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	10
2	A Novel Ensemble Design for Probabilistic Predictions of Fine Particulate Matter Over the Contiguous United States (CONUS). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032554.	1.2	2
3	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
4	Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2). Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351.	1.3	87
5	Toward a Better Regional Ozone Forecast Over CONUS Using Rapid Data Assimilation of Clouds and Meteorology in WRF hem. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13576-13592.	1.2	6
6	Impact of Biomass Burning Aerosols on the Diurnal Cycle of Convective Clouds and Precipitation Over a Tropical Island. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1017-1036.	1.2	29
7	Response of surface ozone over the continental United States to UV radiation declines from the expected recovery of stratospheric ozone. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	11
8	Improved modeling of cloudyâ€sky actinic flux using satellite cloud retrievals. Geophysical Research Letters, 2017, 44, 1592-1600.	1.5	11
9	Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Science and Engineering, 2017, 1, 25-32.	1.1	10
10	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	1.9	307
11	Non-linear partitioning and organic volatility distributions of urban aerosols. Faraday Discussions, 2016, 189, 515-528.	1.6	1
12	Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation. Atmospheric Chemistry and Physics, 2016, 16, 1417-1431.	1.9	87
13	Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmospheric Chemistry and Physics, 2016, 16, 7917-7941.	1.9	216
14	Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2. Atmospheric Environment, 2015, 115, 371-388.	1.9	59
15	Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime. Atmospheric Chemistry and Physics, 2015, 15, 9253-9269.	1.9	74
16	The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmospheric Chemistry and Physics, 2015, 15, 1-18.	1.9	132
17	Modeling particle nucleation and growth over northern California during the 2010 CARES campaign. Atmospheric Chemistry and Physics, 2015, 15, 12283-12313.	1.9	25
18	Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2015, 15, 13487-13506.	1.9	17

#	Article	IF	CITATIONS
19	CESM/CAM5 improvement and application: comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate. Geoscientific Model Development, 2015, 8, 3999-4025.	1.3	11
20	Multiday production of condensing organic aerosol mass in urban and forest outflow. Atmospheric Chemistry and Physics, 2015, 15, 595-615.	1.9	27
21	A multi-model assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation International Initiative (AQMEII) phase 2 over North America: Part I. Indicators of the sensitivity of O3 and PM2.5 formation regimes. Atmospheric Environment, 2015, 115, 569-586.	1.9	36
22	Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2. Atmospheric Environment, 2015, 115, 470-498.	1.9	85
23	Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone. Atmospheric Environment, 2015, 115, 404-420.	1.9	168
24	A multi-model assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of column variable predictions using satellite data. Atmospheric Environment, 2015, 115, 587-603.	1.9	25
25	Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmospheric Environment, 2015, 115, 421-441.	1.9	133
26	Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols. Geophysical Research Letters, 2014, 41, 4795-4804.	1.5	67
27	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	1.9	363
28	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060.	1.9	62
29	Modeling ultrafine particle growth at a pine forest site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2014, 14, 11011-11029.	1.9	12
30	Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model. Atmospheric Chemistry and Physics, 2014, 14, 6213-6239.	1.9	166
31	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	1.9	62
32	Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.	1.9	89
33	CHIMERE 2013: a model for regional atmospheric composition modelling. Geoscientific Model Development, 2013, 6, 981-1028.	1.3	392
34	Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model. Atmospheric Chemistry and Physics, 2013, 13, 5767-5790.	1.9	105
35	Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2013, 13, 8585-8605.	1.9	150
36	Limited influence of dry deposition of semivolatile organic vapors on secondary organic aerosol formation in the urban plume. Geophysical Research Letters, 2013, 40, 3302-3307.	1.5	18

#	Article	IF	CITATIONS
37	Thunderstorms and upper troposphere chemistry during the early stages of the 2006 North American Monsoon. Atmospheric Chemistry and Physics, 2012, 12, 11003-11026.	1.9	48
38	Impact of Trash Burning on Air Quality in Mexico City. Environmental Science & Technology, 2012, 46, 4950-4957.	4.6	51
39	Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume. Atmospheric Chemistry and Physics, 2011, 11, 13219-13241.	1.9	65
40	Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach. Atmospheric Chemistry and Physics, 2011, 11, 6639-6662.	1.9	230
41	Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models. Geoscientific Model Development, 2011, 4, 901-917.	1.3	119
42	Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?. Atmospheric Chemistry and Physics, 2010, 10, 10997-11016.	1.9	80
43	Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 5491-5514.	1.9	340
44	Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity. Atmospheric Chemistry and Physics, 2009, 9, 271-285.	1.9	118
45	Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6949-6981.	1.9	119
46	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6191-6215.	1.9	138
47	Regional modeling of carbonaceous aerosols over Europe—focus on secondary organic aerosols. Journal of Atmospheric Chemistry, 2008, 61, 175-202.	1.4	157
48	A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmospheric Environment, 2008, 42, 4567-4588.	1.9	242
49	Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects. Atmospheric Chemistry and Physics, 2007, 7, 4043-4064.	1.9	198
50	Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate. Comptes Rendus - Geoscience, 2007, 339, 747-763.	0.4	53
51	Aerosol distribution over the western Mediterranean basin during a Tramontane/Mistral event. Annales Geophysicae, 2007, 25, 2271-2291.	0.6	24
52	CityDelta: A model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmospheric Environment, 2007, 41, 189-207.	1.9	189
53	Evolution of aerosol optical thickness over Europe during the August 2003 heat wave as seen from CHIMERE model simulations and POLDER data. Atmospheric Chemistry and Physics, 2006, 6, 1853-1864.	1.9	63
54	Aerosol chemical and optical properties over the Paris area within ESQUIF project. Atmospheric Chemistry and Physics, 2006, 6, 3257-3280.	1.9	31

#	Article	IF	CITATIONS
55	A model evaluation of coarse-mode nitrate heterogeneous formation on dust particles. Atmospheric Environment, 2006, 40, 4158-4171.	1.9	50
56	Long-term urban aerosol simulation versus routine particulate matter observations. Atmospheric Environment, 2005, 39, 5851-5864.	1.9	60
57	Origin of particulate matter pollution episodes in wintertime over the Paris Basin. Atmospheric Environment, 2005, 39, 6159-6174.	1.9	55
58	SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Annales Geophysicae, 2005, 23, 253-275.	0.6	240
59	Aerosol modeling with CHIMERE—preliminary evaluation at the continental scale. Atmospheric Environment, 2004, 38, 2803-2817.	1.9	315
60	Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris. Journal of Geophysical Research, 2004, 109, .	3.3	40