
Wei Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Programmable wettability on photocontrolled graphene film. Science Advances, 2018, 4, eaat7392.	4.7	245
2	Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nature Communications, 2021, 12, 1124.	5.8	227
3	Bioinspired shape-memory graphene film with tunable wettability. Science Advances, 2017, 3, e1700004.	4.7	210
4	Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie - International Edition, 2017, 56, 12127-12131.	7.2	126
5	Three-dimensional splitting microfluidics. Lab on A Chip, 2016, 16, 1332-1339.	3.1	104
6	Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule, 2021, 5, 2211-2222.	11.7	102
7	Bioâ€Inspired Anisotropic Wettability Surfaces from Dynamic Ferrofluid Assembled Templates. Advanced Functional Materials, 2018, 28, 1705802.	7.8	76
8	Reconfigurable and Renewable Nanoâ€Micro‣tructured Plastics for Radiative Cooling. Advanced Functional Materials, 2021, 31, 2100535.	7.8	58
9	Stretchable and Freezeâ€Tolerant Organohydrogel Thermocells with Enhanced Thermoelectric Performance Continually Working at Subzero Temperatures. Advanced Functional Materials, 2021, 31, 2104071.	7.8	53
10	Microencapsulation of solid cores to prepare double emulsion droplets by microfluidics. International Journal of Heat and Mass Transfer, 2019, 135, 158-163.	2.5	43
11	Electric-tunable wettability on a paraffin-infused slippery pattern surface. Chemical Engineering Journal, 2020, 381, 122612.	6.6	40
12	Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie, 2017, 129, 12295-12299.	1.6	37
13	Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Applied Physics Letters, 2018, 113, .	1.5	32
14	Antiâ€Fatigue and Highly Conductive Thermocells for Continuous Electricity Generation. Advanced Functional Materials, 2022, 32, .	7.8	31
15	Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells. ACS Nano, 2022, 16, 8347-8357.	7.3	29
16	Droplet microfluidics with gravity-driven overflow system. Chemical Engineering Journal, 2019, 362, 169-175.	6.6	27
17	Thermal performance analysis and enhancement of the multi-tube latent heat storage (MTLHS) unit. Journal of Energy Storage, 2022, 46, 103812.	3.9	15
18	Droplets breakup via a splitting microchannel. Chinese Physics B, 2020, 29, 054702.	0.7	10

Wei Gao

#	Article	IF	CITATIONS
19	Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels. Micromachines, 2018, 9, 663.	1.4	8
20	Dynamic Liquid Gating Artificially Spinning System for Self-Evolving Topographies and Microstructures. Langmuir, 2021, 37, 1438-1445.	1.6	7
21	Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye. Acta Metallurgica Sinica (English Letters), 2020, 33, 1103-1110.	1.5	5
22	PERFORMANCE IMPROVEMENT EVALUATION OF A LATENT HEAT STORAGE UNIT ENHANCED BY VICSEK FRACTAL FINS. Fractals, 2021, 29, .	1.8	4
23	Hydrodynamics of Compound Droplet Flowing in the Curved Minichannel. Advances in Condensed Matter Physics, 2019, 2019, 1-11.	0.4	2
24	Stretchable and Freezeâ€Tolerant Organohydrogel Thermocells with Enhanced Thermoelectric Performance Continually Working at Subzero Temperatures (Adv. Funct. Mater. 43/2021). Advanced Functional Materials, 2021, 31, 2170322.	7.8	2
25	Visualization study on solid-core encapsulation behaviors of double emulsion in a flow-focusing microchannel. Microsystem Technologies, 2019, 25, 4143-4150.	1.2	1
26	Website Fingerprinting on Access network and Core Gateway. , 2021, , .		1
27	Potential and Challenges of Thermogalvanic Cells for Low-Grade Heat Harvesting. Frontiers in Energy Research, 0, 10, .	1.2	Ο