
## Barry D Dunietz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737590/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Correlating Interfacial Charge Transfer Rates with Interfacial Molecular Structure in the<br>Tetraphenyldibenzoperiflanthene/C <sub>70</sub> Organic Photovoltaic System. Journal of Physical<br>Chemistry Letters, 2022, 13, 763-769.                                                                                                                                                                                                                                                             | 2.1 | 4         |
| 2  | Role of Dielectric Screening in Calculating Excited States of Solvated Azobenzene: A Benchmark Study<br>Comparing Quantum Embedding and Polarizable Continuum Model for Representing the Solvent.<br>Journal of Physical Chemistry Letters, 2022, 13, 4849-4855.                                                                                                                                                                                                                                   | 2.1 | 4         |
| 3  | Heat flow enhancement in a nanoscale plasmonic junction induced by Kondo resonances and<br>electron-phonon coupling. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114536.                                                                                                                                                                                                                                                                                                     | 1.3 | 1         |
| 4  | Achieving Predictive Description of Negative Differential Resistance in Molecular Junctions Using a<br>Range‣eparated Hybrid Functional. Advanced Theory and Simulations, 2021, 4, .                                                                                                                                                                                                                                                                                                               | 1.3 | 4         |
| 5  | Cyanide Bridged Platinum″ron Complexes as Cisplatin Prodrug Systems: Design and Computational<br>Study. ChemPhysChem, 2021, 22, 106-111.                                                                                                                                                                                                                                                                                                                                                           | 1.0 | 1         |
| 6  | Simulating energy transfer dynamics in the Fenna–Matthews–Olson complex via the modified generalized quantum master equation. Journal of Chemical Physics, 2021, 154, 204109.                                                                                                                                                                                                                                                                                                                      | 1.2 | 19        |
| 7  | Three-state harmonic models for photoinduced charge transfer. Journal of Chemical Physics, 2021, 154, 174105.                                                                                                                                                                                                                                                                                                                                                                                      | 1.2 | 11        |
| 8  | CTRAMER: An open-source software package for correlating interfacial charge transfer rate constants with donor/acceptor geometries in organic photovoltaic materials. Journal of Chemical Physics, 2021, 154, 214108.                                                                                                                                                                                                                                                                              | 1.2 | 4         |
| 9  | Intersystem Crossing in Tetrapyrrolic Macrocycles. A First-Principles Analysis. Journal of Physical Chemistry C, 2021, 125, 13493-13500.                                                                                                                                                                                                                                                                                                                                                           | 1.5 | 12        |
| 10 | Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.                                                                                                                                                                                                                                                                                                                                              | 1.2 | 518       |
| 11 | Electronic Spectra of C <sub>60</sub> Films Using Screened Range Separated Hybrid Functionals.<br>Journal of Physical Chemistry A, 2021, 125, 7625-7632.                                                                                                                                                                                                                                                                                                                                           | 1.1 | 5         |
| 12 | Enhancing fluorescence and lowering the optical gap through C P doping of a <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>altimg="si26.svg"&gt;<mml:mi>Ï€</mml:mi>-conjugated molecular backbone: A<br/>computational-based design approach. Journal of Photochemistry and Photobiology, 2021, 8, 100089.</mml:math<br>                                                                                                                                                          | 1,1 | 5         |
| 13 | On the Interplay between Electronic Structure and Polarizable Force Fields When Calculating<br>Solution-Phase Charge-Transfer Rates. Journal of Chemical Theory and Computation, 2020, 16,<br>6481-6490.                                                                                                                                                                                                                                                                                           | 2.3 | 6         |
| 14 | How Well Does a Solvated Octa-acid Capsule Shield the Embedded Chromophore? A Computational<br>Analysis Based on an Anisotropic Dielectric Continuum Model. Journal of Physical Chemistry B, 2020,<br>124, 6998-7004.                                                                                                                                                                                                                                                                              | 1.2 | 4         |
| 15 | Charge transfer rate constants for the carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran: The spin-boson model vs the linearized semiclassical approximation. Journal of Chemical Physics, 2020, 153, 044105.                                                                                                                                                                                                                                                                  | 1.2 | 25        |
| 16 | Photoinduced charge transfer in Zn(II) and Au(III)-ligated symmetric and asymmetric bacteriochlorin dyads: A computational study. Journal of Chemical Physics, 2020, 153, 134111.                                                                                                                                                                                                                                                                                                                  | 1.2 | 13        |
| 17 | Photoinduced Charge Transfer Dynamics in the Carotenoid–Porphyrin–C <sub>60</sub> Triad via the<br>Linearized Semiclassical Nonequilibrium Fermi's Golden Rule. Journal of Physical Chemistry B, 2020,<br>124, 9579-9591.                                                                                                                                                                                                                                                                          | 1.2 | 13        |
| 18 | Molecular-Level Exploration of the Structure-Function Relations Underlying Interfacial Charge<br>Transfer in the Subphthalocyanine/ <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"&gt;<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">mathvariant="normal"&gt;C<mml:mi<br>mathvariant="normal"&gt;C<mml:mn>60</mml:mn></mml:mi<br></mml:math> Organic<br/>Photovoltaic System. Physical Review Applied, 2020, 13, .</mml:math> | 1.5 | 14        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Discovery and characterization of an acridine radical photoreductant. Nature, 2020, 580, 76-80.                                                                                                                                                                   | 13.7 | 277       |
| 20 | Efficient Charge Generation via Hole Transfer in Dilute Organic Donor–Fullerene Blends. Journal of<br>Physical Chemistry Letters, 2020, 11, 2203-2210.                                                                                                            | 2.1  | 19        |
| 21 | On the Role of the Special Pair in Photosystems as a Charge Transfer Rectifier. Journal of Physical<br>Chemistry B, 2020, 124, 1987-1994.                                                                                                                         | 1.2  | 16        |
| 22 | Enhancing charge mobilities in self-assembled N⋯I halogen bonded organic semiconductors: A design<br>approach based on experimental and computational perspectives. Organic Electronics, 2020, 79, 105637.                                                        | 1.4  | 3         |
| 23 | Screened Range-Separated Hybrid Functional with Polarizable Continuum Model Overcomes<br>Challenges in Describing Triplet Excitations in the Condensed Phase Using TDDFT. Journal of Chemical<br>Theory and Computation, 2020, 16, 3287-3293.                     | 2.3  | 29        |
| 24 | Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum<br>master equation to simulate electronically nonadiabatic molecular dynamics. Journal of Chemical<br>Physics, 2019, 151, 074103.                                | 1.2  | 30        |
| 25 | Quantitative Accuracy in Calculating Charge Transfer State Energies in Solvated Molecular<br>Complexes Using a Screened Range Separated Hybrid Functional within a Polarized Continuum Model.<br>Journal of Chemical Theory and Computation, 2019, 15, 4305-4311. | 2.3  | 53        |
| 26 | Vibronic structure of photosynthetic pigments probed by polarized two-dimensional electronic spectroscopy and <i>ab initio</i> calculations. Chemical Science, 2019, 10, 8143-8153.                                                                               | 3.7  | 43        |
| 27 | Explaining Spectral Asymmetries and Excitonic Characters of the Core Pigment Pairs in the Bacterial<br>Reaction Center Using a Screened Range-Separated Hybrid Functional. Journal of Physical Chemistry B,<br>2019, 123, 8970-8975.                              | 1.2  | 23        |
| 28 | A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. Journal of Chemical Physics, 2019, 150, 034101.                                                                                              | 1.2  | 38        |
| 29 | Enhancing charge mobilities in selectively fluorinated oligophenyl organic semiconductors: a design<br>approach based on experimental and computational perspectives. Journal of Materials Chemistry C,<br>2019, 7, 3881-3888.                                    | 2.7  | 16        |
| 30 | Computational Study of Charge-Transfer Dynamics in the Carotenoid–Porphyrin–C <sub>60</sub><br>Molecular Triad Solvated in Explicit Tetrahydrofuran and Its Spectroscopic Signature. Journal of<br>Physical Chemistry C, 2018, 122, 11288-11299.                  | 1.5  | 34        |
| 31 | Excitonic Interactions in Bacteriochlorin Homo-Dyads Enable Charge Transfer: A New Approach to the<br>Artificial Photosynthetic Special Pair. Journal of Physical Chemistry B, 2018, 122, 4131-4140.                                                              | 1.2  | 15        |
| 32 | A comparative study of different methods for calculating electronic transition rates. Journal of<br>Chemical Physics, 2018, 148, 102304.                                                                                                                          | 1.2  | 18        |
| 33 | Fundamental Gaps of Condensed-Phase Organic Semiconductors from Single-Molecule Calculations<br>using Polarization-Consistent Optimally Tuned Screened Range-Separated Hybrid Functionals. Journal<br>of Chemical Theory and Computation, 2018, 14, 6287-6294.    | 2.3  | 76        |
| 34 | Controlling the Emissive Activity in Heterocyclic Systems Bearing Câ•P Bonds. Journal of Physical Chemistry Letters, 2018, 9, 3567-3572.                                                                                                                          | 2.1  | 18        |
| 35 | Phosphorescence in Bromobenzaldehyde Can Be Enhanced through Intramolecular Heavy Atom Effect.<br>Journal of Physical Chemistry C, 2017, 121, 3771-3777.                                                                                                          | 1.5  | 49        |
| 36 | Modification of Molecular Conductance by in Situ Deprotection of Thiol-Based Porphyrin. ACS Applied<br>Materials & Interfaces, 2017, 9, 15901-15906.                                                                                                              | 4.0  | 20        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Conductance of Junctions with Acetyl-Functionalized Thiols: A First-Principles-Based Analysis. Journal of Physical Chemistry C, 2017, 121, 10298-10304.                                                                                                | 1.5 | 12        |
| 38 | Enhancing charge mobilities in organic semiconductors by selective fluorination: a design approach based on a quantum mechanical perspective. Chemical Science, 2017, 8, 6947-6953.                                                                    | 3.7 | 20        |
| 39 | What Is the Optoelectronic Effect of the Capsule on the Guest Molecule in Aqueous Host/Guest<br>Complexes? A Combined Computational and Spectroscopic Perspective. Journal of Physical Chemistry<br>C, 2017, 121, 15481-15488.                         | 1.5 | 17        |
| 40 | Photoinduced Homolytic Bond Cleavage of the Central Si–C Bond in Porphyrin Macrocycles Is a<br>Charge Polarization Driven Process. Journal of Physical Chemistry A, 2016, 120, 7634-7640.                                                              | 1.1 | 6         |
| 41 | Achieving Predictive Description of Molecular Conductance by Using a Range-Separated Hybrid<br>Functional. Nano Letters, 2016, 16, 6092-6098.                                                                                                          | 4.5 | 21        |
| 42 | Deleterious Effects of Exact Exchange Functionals on Predictions of Molecular Conductance.<br>Journal of Chemical Theory and Computation, 2016, 12, 3431-3435.                                                                                         | 2.3 | 10        |
| 43 | The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic<br>Photovoltaic System. Journal of Physical Chemistry A, 2016, 120, 2970-2975.                                                                    | 1.1 | 20        |
| 44 | Unraveling the Mechanism of Photoinduced Charge Transfer in<br>Carotenoid–Porphyrin–C <sub>60</sub> Molecular Triad. Journal of Physical Chemistry Letters, 2015,<br>6, 1231-1237.                                                                     | 2.1 | 48        |
| 45 | Calculating High Energy Charge Transfer States Using Optimally Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 2015, 11, 1110-1117.                                                                              | 2.3 | 51        |
| 46 | Ultrafast Charge-Transfer Dynamics at the Boron Subphthalocyanine Chloride/C <sub>60</sub><br>Heterojunction: Comparison between Experiment and Theory. Journal of Physical Chemistry Letters,<br>2015, 6, 569-575.                                    | 2.1 | 41        |
| 47 | Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular<br>Physics, 2015, 113, 184-215.                                                                                                                           | 0.8 | 2,561     |
| 48 | Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study. Journal of Chemical Physics, 2014, 141, 121102.                                                             | 1.2 | 31        |
| 49 | Molecular Structure, Spectroscopy, and Photoinduced Kinetics in Trinuclear Cyanide Bridged<br>Complex in Solution: A First-Principles Perspective. Journal of the American Chemical Society, 2014, 136,<br>16954-16957.                                | 6.6 | 13        |
| 50 | Donor-to-Donor vs Donor-to-Acceptor Interfacial Charge Transfer States in the<br>Phthalocyanine–Fullerene Organic Photovoltaic System. Journal of Physical Chemistry Letters, 2014,<br>5, 3810-3816.                                                   | 2.1 | 68        |
| 51 | Calculation from First-Principles of Golden Rule Rate Constants for Photoinduced<br>Subphthalocyanine/Fullerene Interfacial Charge Transfer and Recombination in Organic Photovoltaic<br>Cells. Journal of Physical Chemistry C, 2014, 118, 9780-9789. | 1.5 | 58        |
| 52 | Orbital gap predictions for rational design of organic photovoltaic materials. Organic Electronics, 2014, 15, 1509-1520.                                                                                                                               | 1.4 | 110       |
| 53 | Active control of thermal transport in molecular spin valves. Physical Review B, 2013, 88, .                                                                                                                                                           | 1.1 | 5         |
| 54 | End-Group Influence on Frontier Molecular Orbital Reorganization and Thermoelectric Properties of<br>Molecular Junctions. Journal of Physical Chemistry Letters, 2013, 4, 3825-3833.                                                                   | 2.1 | 12        |

| #  | Article                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Calculation from First Principles of Intramolecular Golden-Rule Rate Constants for Photo-Induced<br>Electron Transfer in Molecular Donor–Acceptor Systems. Journal of Physical Chemistry C, 2013, 117,<br>23391-23401.                                                                                                          | 1.5 | 77        |
| 56 | Solvated Charge Transfer States of Functionalized Anthracene and Tetracyanoethylene Dimers: A Computational Study Based on a Range Separated Hybrid Functional and Charge Constrained Self-Consistent Field with Switching Gaussian Polarized Continuum Models. Journal of Chemical Theory and Computation, 2013, 9, 1125-1131. | 2.3 | 71        |
| 57 | On the suppression and significance of ghost transmission in electron transport modeling of single molecule junctions. Journal of Chemical Physics, 2012, 137, 194104.                                                                                                                                                          | 1.2 | 12        |
| 58 | Length dependence of frontier orbital alignment in aromatic molecular junctions. Applied Physics<br>Letters, 2012, 101, .                                                                                                                                                                                                       | 1.5 | 44        |
| 59 | Ab Initio Study of the Emissive Charge-Transfer States of Solvated Chromophore-Functionalized Silsesquioxanes. Journal of the American Chemical Society, 2012, 134, 6944-6947.                                                                                                                                                  | 6.6 | 72        |
| 60 | Ab Initio Calculation of the Electronic Absorption of Functionalized Octahedral Silsesquioxanes via<br>Time-Dependent Density Functional Theory with Range-Separated Hybrid Functionals. Journal of<br>Physical Chemistry A, 2012, 116, 1137-1145.                                                                              | 1.1 | 52        |
| 61 | Calculating Off-Site Excitations in Symmetric Donor–Acceptor Systems via Time-Dependent Density<br>Functional Theory with Range-Separated Density Functionals. Journal of Chemical Theory and<br>Computation, 2012, 8, 2661-2668.                                                                                               | 2.3 | 34        |
| 62 | End-Group-Induced Charge Transfer in Molecular Junctions: Effect on Electronic-Structure and Thermopower. Journal of Physical Chemistry Letters, 2012, 3, 1962-1967.                                                                                                                                                            | 2.1 | 57        |
| 63 | Effect of Length and Contact Chemistry on the Electronic Structure and Thermoelectric Properties of Molecular Junctions. Journal of the American Chemical Society, 2011, 133, 8838-8841.                                                                                                                                        | 6.6 | 156       |
| 64 | Bias effects on the electronic spectrum of a molecular bridge. Journal of Chemical Physics, 2011, 134, 054708.                                                                                                                                                                                                                  | 1.2 | 3         |
| 65 | Photoinduced absolute negative current in a symmetric molecular electronic bridge. Physical Review<br>B, 2010, 82, .                                                                                                                                                                                                            | 1.1 | 6         |
| 66 | On the conditions for enhanced transport through molecular junctions based on metal centres ligated by pairs of pyridazino-derived ligands. Molecular Physics, 2010, 108, 2591-2599.                                                                                                                                            | 0.8 | 2         |
| 67 | Contact Geometry Symmetry Dependence of Field Effect Gating in Single-Molecule Transistors. Journal of the American Chemical Society, 2010, 132, 2914-2918.                                                                                                                                                                     | 6.6 | 12        |
| 68 | Beyond 7-Azaindole: Conjugation Effects on Intermolecular Double Hydrogen-Atom Transfer<br>Reactions. Journal of Physical Chemistry A, 2009, 113, 4862-4867.                                                                                                                                                                    | 1.1 | 16        |
| 69 | Multiadsorption and Coadsorption of Hydrogen on Model Conjugated Systems. Journal of Physical Chemistry C, 2009, 113, 12571-12579.                                                                                                                                                                                              | 1.5 | 22        |
| 70 | On the Electronic Spectra of a Molecular Bridge Under Non-Equilibrium Electric Potential Conditions. Progress in Theoretical Chemistry and Physics, 2009, , 265-277.                                                                                                                                                            | 0.2 | 1         |
| 71 | Accessing Metalâ^Carbide Chemistry. A Computational Analysis of Thermodynamic Considerations.<br>Organometallics, 2008, 27, 814-826.                                                                                                                                                                                            | 1.1 | 21        |
| 72 | Gating of single molecule transistors: Combining field-effect and chemical control. Journal of Chemical Physics, 2008, 128, 154706.                                                                                                                                                                                             | 1.2 | 26        |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Conductance of a Cobalt(II) Terpyridine Complex Based Molecular Transistor:  A Computational<br>Analysis. Journal of Physical Chemistry A, 2008, 112, 2043-2048.                                                                                          | 1.1 | 22        |
| 74 | Synthetic, Mechanistic, and Computational Investigations of Nitrile-Alkyne Cross-Metathesis. Journal of the American Chemical Society, 2008, 130, 8984-8999.                                                                                              | 6.6 | 74        |
| 75 | Modeling time-dependent current through electronic open channels using a mixed time-frequency solution to the electronic equations of motion. Physical Review B, 2008, 78, .                                                                              | 1.1 | 34        |
| 76 | Ab initio study of charge transport of hydrogen functionalized palladium wires. Journal of Chemical<br>Physics, 2008, 129, 024702.                                                                                                                        | 1.2 | 5         |
| 77 | Enhanced Conductance via Induced Î-Stacking Interactions in Cobalt(II) Terpyridine Bridged Complexes.<br>Journal of Physical Chemistry B, 2008, 112, 16070-16075.                                                                                         | 1.2 | 12        |
| 78 | Carbonyl mediated conductance through metal bound peptides: a computational study.<br>Nanotechnology, 2007, 18, 424003.                                                                                                                                   | 1.3 | 12        |
| 79 | Theoretical Studies of Conjugation Effects on Excited State Intramolecular Hydrogen-Atom Transfer<br>Reactions in Model Systems. Journal of Physical Chemistry A, 2007, 111, 10139-10143.                                                                 | 1.1 | 11        |
| 80 | Electron Transport through Heterogeneous Intermolecular Tunnel Junctions. Journal of Physical<br>Chemistry C, 2007, 111, 1535-1540.                                                                                                                       | 1.5 | 7         |
| 81 | Single-molecule field-effect transistors: A computational study of the effects of contact geometry and gating-field orientation on conductance-switching properties. Physical Review B, 2007, 75, .                                                       | 1.1 | 18        |
| 82 | Fragmentation pathways and mechanisms of aromatic compounds in atmospheric pressure studied by<br>GC–DMS and DMS–MS. International Journal of Mass Spectrometry, 2007, 263, 137-147.                                                                      | 0.7 | 28        |
| 83 | Metathesis-Enabled Formation of a Terminal Ruthenium Carbide Complex:Â A Computational Study.<br>Organometallics, 2006, 25, 4756-4762.                                                                                                                    | 1.1 | 15        |
| 84 | Hydrogen Physisorption on the Organic Linker in Metal Organic Frameworks:Â Ab Initio Computational<br>Study. Journal of Physical Chemistry B, 2006, 110, 10479-10484.                                                                                     | 1.2 | 39        |
| 85 | Advances in methods and algorithms in a modern quantum chemistry program package. Physical<br>Chemistry Chemical Physics, 2006, 8, 3172-3191.                                                                                                             | 1.3 | 2,597     |
| 86 | Benchmarking the performance of density functional theory based Green's function formalism<br>utilizing different self-energy models in calculating electronic transmission through molecular<br>systems. Journal of Chemical Physics, 2006, 125, 204717. | 1.2 | 27        |
| 87 | Spin-dependent electronic transport through a porphyrin ring ligating anFe(II)atom: Anab initiostudy.<br>Physical Review B, 2006, 74, .                                                                                                                   | 1.1 | 41        |
| 88 | The Spin Dependence of the Spatial Size of Fe(II) and of the Structure of Fe(II)-Porphyrins. Journal of<br>Physical Chemistry A, 2004, 108, 4653-4657.                                                                                                    | 1.1 | 36        |
| 89 | Initiation of Electro-Oxidation of CO on Pt Based Electrodes at Full Coverage Conditions Simulated by<br>Ab Initio Electronic Structure Calculations. Journal of Physical Chemistry B, 2004, 108, 9888-9892.                                              | 1.2 | 16        |
| 90 | Electro-oxidation of CO on Pt-based electrodes simulated by electronic structure calculations.<br>Journal of Electroanalytical Chemistry, 2003, 554-555, 459-465.                                                                                         | 1.9 | 18        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Manifestations of Symmetry Breaking in Self-consistent Field Electronic Structure Calculations.<br>Journal of Physical Chemistry A, 2003, 107, 9160-9167.                                                 | 1.1 | 13        |
| 92  | Initial Steps of the Photodissociation of the CO Ligated Heme Group. Journal of Physical Chemistry B, 2003, 107, 5623-5629.                                                                               | 1.2 | 68        |
| 93  | GEOMETRIC DIRECT MINIMIZATION OF HARTREE–FOCK CALCULATIONS INVOLVING OPEN SHELL<br>WAVEFUNCTIONS WITH SPIN RESTRICTED ORBITALS. Journal of Theoretical and Computational<br>Chemistry, 2002, 01, 255-261. | 1.8 | 10        |
| 94  | Characterization of the Relevant Excited States in the Photodissociation of CO-Ligated Hemoglobin and Myoglobin. Journal of the American Chemical Society, 2002, 124, 12070-12071.                        | 6.6 | 81        |
| 95  | Large-Scale ab Initio Quantum Chemical Calculations on Biological Systems. Accounts of Chemical Research, 2001, 34, 351-358.                                                                              | 7.6 | 101       |
| 96  | Application and development of multiconfigurational localized perturbation theory. Journal of Chemical Physics, 2001, 115, 11052-11067.                                                                   | 1.2 | 19        |
| 97  | Activation of the Câ <sup>~</sup> H Bond of Methane by Intermediate Q of Methane Monooxygenase:Â A Theoretical<br>Study. Journal of the American Chemical Society, 2001, 123, 3836-3837.                  | 6.6 | 108       |
| 98  | Large Scale ab Initio Quantum Chemical Calculation of the Intermediates in the Soluble Methane<br>Monooxygenase Catalytic Cycle. Journal of the American Chemical Society, 2000, 122, 2828-2839.          | 6.6 | 176       |
| 99  | Calculation of atomization energies by a multiconfigurational localized perturbation theory—Application for closed shell cases. Journal of Chemical Physics, 1999, 110, 1921-1930.                        | 1.2 | 14        |
| 100 | Correlated ab Initio Electronic Structure Calculations for Large Molecules. Journal of Physical Chemistry A, 1999, 103, 1913-1928.                                                                        | 1.1 | 274       |