Saeed M Al-Zahrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737529/publications.pdf

Version: 2024-02-01

126 papers 3,500 citations

32 h-index 51 g-index

127 all docs

127 docs citations

times ranked

127

4311 citing authors

#	Article	IF	Citations
1	A framework for visible-light water splitting. Energy and Environmental Science, 2010, 3, 1865.	30.8	181
2	Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Applied Sciences (Switzerland), 2019, 9, 1149.	2.5	153
3	Effectiveness of metal–organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels. Fuel, 2011, 90, 190-197.	6.4	124
4	Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination, 2014, 345, 36-49.	8.2	118
5	A review on electrically conductive polypropylene and polyethylene. Polymer Composites, 2014, 35, 900-914.	4.6	100
6	Utilization of Polyethylene and Paraffin Waxes as Controlled Delivery Systems for Different Fertilizers. Industrial & Engineering Chemistry Research, 2000, 39, 367-371.	3.7	96
7	Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: Influence of perovskite synthesis method on catalyst properties and performance. Applied Catalysis B: Environmental, 2011, 105, 276-288.	20.2	93
8	Combined organic–inorganic fouling of forward osmosis hollow fiber membranes. Water Research, 2012, 46, 6329-6338.	11.3	83
9	Design and fabrication of a portable and hybrid solar-powered membrane distillation system. Journal of Cleaner Production, 2016, 133, 631-647.	9.3	80
10	A REVIEW OF THE APPLICATIONS OF NANOCARBON POLYMER COMPOSITES. Nano, 2011, 06, 185-203.	1.0	79
11	Controlled-release of fertilizers: modelling and simulation. International Journal of Engineering Science, 1999, 37, 1299-1307.	5.0	67
12	Used lubricating oil regeneration by various solvent extraction techniques. Journal of Industrial and Engineering Chemistry, 2013, 19, 536-539.	5.8	66
13	High density polyethylene/micro calcium carbonate composites: A study of the morphological, thermal, and viscoelastic properties. Journal of Applied Polymer Science, 2010, 117, 2413-2421.	2.6	61
14	Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications. Polymers, 2021, 13, 575.	4.5	60
15	Catalysts for Hydrogen Production from Heavy Hydrocarbons. ChemCatChem, 2011, 3, 440-457.	3.7	58
16	Long term stability of superoxide ion in piperidinium, pyrrolidinium and phosphonium cations-based ionic liquids and its utilization in the destruction of chlorobenzenes. Journal of Electroanalytical Chemistry, 2012, 664, 26-32.	3.8	55
17	Effects of scaling and cleaning on the performance of forward osmosis hollow fiber membranes. Journal of Membrane Science, 2012, 415-416, 101-108.	8.2	54
18	A method of predicting effective solvent extraction parameters for recycling of used lubricating oils. Chemical Engineering and Processing: Process Intensification, 2002, 41, 765-769.	3.6	52

#	Article	IF	CITATIONS
19	An Oxygenâ€Deficient Perovskite as Selective Catalyst in the Oxidation of Alkyl Benzenes. Angewandte Chemie - International Edition, 2011, 50, 6557-6561.	13.8	51
20	A generalized rheological model for shear thinning fluids. Journal of Petroleum Science and Engineering, 1997, 17, 211-215.	4.2	49
21	Enhancing mechanical properties of epoxy/polyaniline coating with addition of ZnO nanoparticles: Nanoindentation characterization. Progress in Organic Coatings, 2018, 119, 109-115.	3.9	48
22	A general model for the viscosity of waxy oils. Chemical Engineering and Processing: Process Intensification, 1998, 37, 433-437.	3.6	46
23	Catalytic Performance of Chromium Oxide Supported on Al2O3in Oxidative Dehydrogenation of Isobutane to Isobutene. Industrial & Samp; Engineering Chemistry Research, 2001, 40, 781-784.	3.7	45
24	Photocatalytic Hydrogen Production on Cd _{$1\hat{a}^{\prime\prime}$<i>x</i>} Zn _{<i>x</i>} S Solid Solutions under Visible Light: Influence of Thermal Treatment. Industrial & Engineering Chemistry Research, 2010, 49, 6854-6861.	3.7	45
25	Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions: A Review. Scientific World Journal, The, 2012, 2012, 1-11.	2.1	44
26	Isolation and Characterization of Alpha and Nanocrystalline Cellulose from Date Palm (Phoenix) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50 4
27	Comparative study of internal batch mixer such as cam, banbury and roller: Numerical simulation and experimental verification. Chemical Engineering Science, 2011, 66, 2502-2511.	3.8	38
28	Impact of precursor sequence of addition for one-pot synthesis of Cr-MCM-41 catalyst nanoparticles to enhance ethane oxidative dehydrogenation with carbon dioxide. Ceramics International, 2019, 45, 1125-1134.	4.8	38
29	Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production. Bioresource Technology, 2011, 102, 9564-9570.	9.6	37
30	Atomic Force Microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites. Journal of Polymer Research, 2012, 19, 1.	2.4	36
31	Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites. Journal of Polymer Research, 2013, 20, 1.	2.4	35
32	Catalytic cracking of gas oils in electromagnetic fields: reactor design and performance. Fuel Processing Technology, 2003, 80, 169-182.	7.2	34
33	Cd1â^'xZnxS solid solutions supported on ordered mesoporous silica (SBA-15): Structural features and photocatalytic activity under visible light. International Journal of Hydrogen Energy, 2012, 37, 9948-9958.	7.1	34
34	Oxidative dehydrogenation of isobutane over pyrophosphates catalytic systems. Catalysis Letters, 2000, 69, 65-70.	2.6	33
35	Rheological and mechanical properties of polypropylene/calcium carbonate nanocomposites prepared from masterbatch. Journal of Thermoplastic Composite Materials, 2016, 29, 593-622.	4.2	32
36	Facile synthesis of epoxy nanocomposite coatings using inorganic nanoparticles for enhanced thermo-mechanical properties: a comparative study. Journal of Coatings Technology Research, 2016, 13, 159-169.	2.5	31

#	Article	IF	CITATIONS
37	Progress in Carbon Fiber and Its Polypropylene- and Polyethylene-Based Composites. Polymer-Plastics Technology and Engineering, 2014, 53, 1845-1860.	1.9	30
38	Influence of SiO2 Content and Exposure Periods on the Anticorrosion Behavior of Epoxy Nanocomposite Coatings. Coatings, 2020, 10, 118.	2.6	30
39	Selection of optimum chromium oxide-based catalysts for propane oxidehydrogenation. Catalysis Today, 2003, 81, 507-516.	4.4	28
40	Viscoelastic, thermal, and morphological analysis of HDPE/EVA/CaCO3 ternary blends. Polymer Bulletin, 2011, 67, 1961-1978.	3.3	27
41	Developments in Shape Memory Polymeric Materials. Polymer-Plastics Technology and Engineering, 2013, 52, 1574-1589.	1.9	26
42	Optimization and Control of Industrial Gas-Phase Ethylene Polymerization Reactors. Industrial & Engineering Chemistry Research, 1998, 37, 3414-3423.	3.7	25
43	Alumina-supported chromium-based mixed-oxide catalysts in oxidative dehydrogenation of isobutane to isobutene. Chemical Engineering and Processing: Process Intensification, 2003, 42, 817-823.	3.6	25
44	Oxidative dehydrogenation of propane over supported chromium–molybdenum oxides catalysts. Catalysis Communications, 2003, 4, 579-584.	3.3	25
45	Liquid-phase oxidation of p-xylene using N-hydroxyimides. Catalysis Communications, 2010, 12, 5-8.	3.3	25
46	Nanoindentation and dynamic mechanical properties of PP/clay nanocomposites. Journal of Polymer Research, 2012, 19, 1.	2.4	25
47	Generation of superoxide ion in 1-butyl-1-methylpyrrolidinium trifluoroacetate and its application in the destruction of chloroethanes. Journal of Molecular Liquids, 2012, 167, 28-33.	4.9	25
48	Effects of carbon dioxide during oxidative coupling of methane over lithium/magnesia: mechanisms and models. Industrial & Engineering Chemistry Research, 1994, 33, 251-258.	3.7	23
49	Thermal regeneration of the metal organic frameworks used in the adsorption of refractory organosulfur compounds from liquid fuels. Fuel, 2013, 105, 459-465.	6.4	23
50	Development of ionic and nonâ€ionic natural gumâ€based bigels: Prospects for drug delivery application. Journal of Applied Polymer Science, 2015, 132, .	2.6	23
51	Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Applied Catalysis A: General, 2019, 584, 117114.	4.3	23
52	Hydrogen production by reforming of diesel fuel over catalysts derived from LaCo1â^'xRuxO3 perovskites: Effect of the partial substitution of Co by Ru (x=0.01â€"0.1). Journal of Power Sources, 2011, 196, 9087-9095.	7.8	22
53	Crystallization behavior of poly(lactic acid)/elastomer blends. Journal of Polymer Research, 2012, 19, 1.	2.4	22
54	Diesel fuel reforming over catalysts derived from LaCo1â^'xRuxO3 perovskites with high Ru loading. International Journal of Hydrogen Energy, 2012, 37, 7056-7066.	7.1	22

#	Article	IF	CITATIONS
55	Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice. Bioprocess and Biosystems Engineering, 2014, 37, 1007-1015.	3.4	22
56	Oxidative dehydrogenation of isobutane on chromium oxide-based catalyst. Chemical Engineering and Processing: Process Intensification, 2005, 44, 835-840.	3.6	21
57	Cd1â^xZnxS supported on SBA-16 as photocatalysts for water splitting under visible light: Influence of Zn concentration. International Journal of Hydrogen Energy, 2013, 38, 11799-11810.	7.1	21
58	Strontium Aluminate-Based Long Afterglow PP Composites: Phosphorescence, Thermal, and Mechanical Characteristics. Polymers, 2021, 13, 1373.	4.5	21
59	Propane Oxidative Dehydrogenation over Alumina-Supported Metal Oxides. Industrial & Dehydrogenation over Alumina-Supported Metal Oxi	3.7	20
60	Enhancement in Nanomechanical, Thermal, and Abrasion Properties of SiO2 Nanoparticle-Modified Epoxy Coatings. Coatings, 2020, 10, 310.	2.6	20
61	Kinetics of oxidehydrogenation of propane over alumina-supported Sr–V–Mo catalysts. Catalysis Communications, 2012, 26, 98-102.	3.3	18
62	Efficient solvent regeneration of Basolite C300 used in the liquid-phase adsorption of dibenzothiophene. Fuel, 2013, 113, 216-220.	6.4	18
63	Multiwall carbon nanotubes filled polypropylene nanocomposites: Rheological and electrical properties. Polymer Engineering and Science, 2014, 54, 1134-1143.	3.1	18
64	Polypropylene/organoclay nanocomposites prepared using a Laboratory Mixing Extruder (LME): crystallization, thermal stability and dynamic mechanical properties. Journal of Polymer Research, 2014, 21, 1.	2.4	18
65	Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers, 2020, 12, 2038.	4.5	18
66	Synthesis and Characterization of Cellulose Triacetate Obtained from Date Palm (Phoenix dactylifera) Tj ETQq	0 0 0 ggBT /C	verlock 10 Ti
67	Isobutane oxydehydrogenation on Al2O3-supported transition and rare-earth metal oxides. Journal of Molecular Catalysis A, 2004, 218, 179-186.	4.8	17
68	Oxidative dehydrogenation of propane to propylene over Al2O3-supported Sr–V–Mo catalysts. Catalysis Communications, 2011, 14, 107-110.	3.3	17
69	Toward understanding the mechanism of pure CO ₂ â€quenching sonochemical processes. Journal of Chemical Technology and Biotechnology, 2020, 95, 553-566.	3.2	17
70	Dehydrogenation of Ethane to Ethylene by CO2 over Highly Dispersed Cr on Large-Pore Mesoporous Silica Catalysts. Catalysts, 2020, 10, 97.	3.5	17
71	Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Polymers, 2021, 13, 1490.	4.5	16
72	Propane Oxidative Dehydrogenation over Metal Pyrophosphates Catalysts. Catalysis Letters, 2001, 74, 145-148.	2.6	15

#	Article	IF	CITATIONS
73	Propane oxidative dehydrogenation on Cs-doped Cr-Mo-Al-O catalyst: kinetics and mechanism. Chemical Engineering Journal, 2004, 103, 59-67.	12.7	15
74	Performances of new Kieselguhr-supported transition metal oxide catalysts in propane oxydehydrogenation. Catalysis Communications, 2006, 7, 79-85.	3.3	15
75	Influence of Natural and Accelerated Weathering on the Mechanical Properties of Low-Density Polyethylene Films. International Journal of Polymer Analysis and Characterization, 2014, 19, 189-203.	1.9	15
76	Effect of Incorporated ZnO Nanoparticles on the Corrosion Performance of SiO2 Nanoparticle-Based Mechanically Robust Epoxy Coatings. Materials, 2020, 13, 3767.	2.9	15
77	Title is missing!. Catalysis Letters, 2003, 87, 121-132.	2.6	14
78	Activities of \hat{I}^3 -Al2O3-Supported Metal Oxide Catalysts in Propane Oxidative Dehydrogenation. Catalysis Letters, 2003, 85, 57-67.	2.6	14
79	Sonochemical production of hydrogen: A numerical model applied to the recovery of aqueous methanol waste under o∢scp>xygenâ€argon⟨/scp> atmosphere. Environmental Progress and Sustainable Energy, 2021, 40, e13511.	2.3	14
80	Low temperature hydrocracking of n-heptane over Ni-supported catalysts: study of global kinetics. Applied Catalysis A: General, 2001, 219, 131-140.	4.3	13
81	Oxidehydrogenation of propane to propylene over Sr–V–Mo catalysts: Effects of reaction temperature and space time. Journal of Industrial and Engineering Chemistry, 2012, 18, 1153-1156.	5.8	13
82	Impact of intrinsic properties of foulants on membrane performance in osmotic desalination applications. Separation and Purification Technology, 2014, 123, 87-95.	7.9	13
83	Platinum-coated silicotungstic acid-sulfonated polyvinyl alcohol-polyaniline based hybrid ionic polymer metal composite membrane for bending actuation applications. Scientific Reports, 2022, 12, 4467.	3.3	13
84	Low temperature transalkylation of o-diethylbenzene with benzene to ethylbenzene using triflic acid as a catalyst. Chemical Engineering and Processing: Process Intensification, 2005, 44, 841-846.	3.6	12
85	Production of fructose from highly concentrated date extracts using Saccharomyces cerevisiae. Biotechnology Letters, 2014, 36, 531-536.	2.2	12
86	Understanding the interaction between biomacromolecules and their influence on forward osmosis process. Desalination, 2016, 385, 12-23.	8.2	11
87	Effect of plasticizer on the electrical, thermal, and morphological properties of carbon black filled poly(propylene). Polymer Composites, 2017, 38, 2472-2479.	4.6	11
88	Synergistic effect of Ag and ZnO nanoparticles on polyaniline incorporated epoxy/2pack coatings for splash zone applications. Journal of Coatings Technology Research, 2019, 16, 835-845.	2.5	11
89	Modelling and simulation of 1,2-dichloroethane production by ethylene oxychlorination in fluidized-bed reactor. Chemical Engineering Science, 2001, 56, 621-626.	3.8	10
90	Transalkylation and isomerization of ortho-diethylbenzene with benzene using trifluoromethanesulphonic acid catalyst: kinetic analysis. Chemical Engineering and Processing: Process Intensification, 2002, 41, 321-327.	3.6	10

#	Article	IF	CITATIONS
91	Treatment of acidic palm oil for fatty acid methyl esters production. Chemical Papers, 2012, 66, .	2.2	10
92	Characterization of poly(lactic acid)/hydroxyapatite prepared by a solvent-blending technique. Journal of Elastomers and Plastics, 2015, 47, 753-768.	1.5	10
93	A green process for simultaneous production of fructose and ethanol via selective fermentation. Journal of Cleaner Production, 2017, 162, 420-426.	9.3	10
94	Development of Bigels Based on Date Palm-Derived Cellulose Nanocrystal-Reinforced Guar Gum Hydrogel and Sesame Oil/Candelilla Wax Oleogel as Delivery Vehicles for Moxifloxacin. Gels, 2022, 8, 330.	4.5	10
95	Keggin-type polyoxotungstate as a catalyst in oxidative dehydrogenation of propane. Journal of Molecular Catalysis A, 2001, 175, 259-265.	4.8	9
96	The Influences of Elastomer toward Crystallization of Poly(lactic acid). Procedia Chemistry, 2012, 4, 164-171.	0.7	9
97	Effect of Sr loading on oxydehydrogenation of propane to propylene over Al2O3-supported V-Mo catalysts. Journal of Energy Chemistry, 2013, 22, 778-782.	12.9	9
98	Synergistic Effect of Ag and ZnO Nanoparticles on Polypyrrole-Incorporated Epoxy/2pack Coatings and Their Corrosion Performances in Chloride Solutions. Coatings, 2019, 9, 287.	2.6	9
99	The multiple role of inorganic and organic additives in the degradation of reactive green 12 by UV/chlorine advanced oxidation process. Environmental Technology (United Kingdom), 2022, 43, 835-847.	2.2	9
100	Nanomechanical and Electrochemical Properties of ZnO-Nanoparticle-Filled Epoxy Coatings. Coatings, 2022, 12, 282.	2.6	9
101	A Convenient and Simple Ionic Polymer-Metal Composite (IPMC) Actuator Based on a Platinum-Coated Sulfonated Poly(ether ether ketone)–Polyaniline Composite Membrane. Polymers, 2022, 14, 668.	4.5	8
102	Influence of plasticizers and cryogenic grinding on the high ooling ate solidification behavior of PBT/PET blends. Journal of Applied Polymer Science, 2016, 133, .	2.6	7
103	Synergetic Impact of Secondary Metal Oxides of Cr-M/MCM41 Catalyst Nanoparticles for Ethane Oxidative Dehydrogenation Using Carbon Dioxide. Crystals, 2020, 10, 7.	2.2	7
104	An efficient oxidation of benzylic and alicylic compounds with water-soluble copper catalysts in t-butyl hydroperoxide at room temperature. Chinese Chemical Letters, 2011, 22, 691-693.	9.0	6
105	Thermotropic poly(azomethine-urethane)s with non linear optical properties: Synthesis and characterization. Polymer Science - Series B, 2012, 54, 342-348.	0.8	6
106	Preparation and characterization of poly(lactic acid)/elastomer blends prepared by melt blending technique. Journal of Elastomers and Plastics, 2014, 46, 253-268.	1.5	6
107	Development and Characterization of PA 450 and PA 3282 Epoxy Coatings as Anti-Corrosion Materials for Offshore Applications. Materials, 2022, 15, 2562.	2.9	6
108	Long Persistent Luminescent HDPE Composites with Strontium Aluminate and Their Phosphorescence, Thermal, Mechanical, and Rheological Characteristics. Materials, 2022, 15, 1142.	2.9	5

7

#	Article	IF	CITATIONS
109	Date-Palm-Derived Cellulose Nanocrystals as Reinforcing Agents for Poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlo	с <u>ұ.1</u> 0 Тf 5	0 ₅ 742 Td (a
110	<i>In Vitro</i> Biodegradability of Poly(lactic Acid)/Hydroxyapatite Biocomposites Prepared by Solvent-Blending Technique. Advanced Materials Research, 2012, 626, 631-635.	0.3	4
111	Improvements in barrier properties of poly(ethylene terephthalate) films using commercially available high barrier masterbatch additives via melt blend technique. Journal of Plastic Film and Sheeting, 2013, 29, 21-38.	2.2	4
112	Utilization of polyethylene terephthalate waste as a carbon filler in polypropylene matrix: Investigation of mechanical, rheological, and thermal properties. Journal of Applied Polymer Science, 2021, 138, 50292.	2.6	4
113	Conductive Plastics from Al Platelets in a PBT-PET Polyester Blend Having Co-Continuous Morphology. Polymers, 2022, 14, 1092.	4.5	4
114	Assessing learning outcomes in electrical engineering education: A case study from Saudi Arabia. International Journal of Electrical Engineering and Education, 2014, 51, 354-367.	0.8	3
115	Synthesis, Characterization and Catalytic Evaluation of Chromium Oxide Deposited on Titania–Silica Mesoporous Nanocomposite for the Ethane Dehydrogenation with CO2. Crystals, 2020, 10, 322.	2.2	3
116	Amorphous Poly(ethylene terephthalate) Composites with High-Aspect Ratio Aluminium Nano Platelets. Polymers, 2022, 14, 630.	4.5	3
117	Effect of Compatibilizer on the Persistent Luminescence of Polypropylene/Strontium Aluminate Composites. Polymers, 2022, 14, 1711.	4.5	3
118	The effects of gas composition and process conditions on the oxidative coupling of methane over Li/MgO catalyst. Studies in Surface Science and Catalysis, 1996, , 383-396.	1.5	2
119	Title is missing!. Catalysis Letters, 2002, 78, 331-337.	2.6	2
120	A Direct Process for the Production of High Fructose Syrups from Dates Extracts. International Journal of Food Engineering, 2010, 6, .	1.5	2
121	The influences of elastomer toward degradability of poly (lactic acid). AIP Conference Proceedings, 2016, , .	0.4	2
122	Effects of extrusion parameters on tensile strength of polybenzimidazole fiber-reinforced high density polyethylene composites. Journal of Polymer Engineering, 2016, 36, 113-118.	1.4	2
123	Large-scale synthesis of porous magnetic composites for catalytic applications. Studies in Surface Science and Catalysis, 2010, , 347-350.	1.5	1
124	Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer. AIP Conference Proceedings, 2015, , .	0.4	1
125	Characterization of Thermal, Ionic Conductivity and Electrochemical Properties of Some p-Tosylate Anions-Based Protic Ionic Compounds. Crystals, 2022, 12, 507.	2.2	1
126	Effect of nucleating agent incorporation on mechanical, morphological, and rheological properties of in-situ copolymer polypropylene and PPH/POE blends. AIP Conference Proceedings, 2019, , .	0.4	0