
## Harold M. Aukema

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737508/publications.pdf Version: 2024-02-01



HADOLD M ALIKEMA

| #  | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparing Flaxseed and Perindopril in the Prevention of Doxorubicin and Trastuzumab-Induced<br>Cardiotoxicity in C57Bl/6 Mice. Current Oncology, 2022, 29, 2941-2953.                                                                                                                       | 0.9 | 4         |
| 2  | The Plasma Oxylipidome Links Smoking Status to Peripheral Artery Disease. Metabolites, 2022, 12, 627.                                                                                                                                                                                       | 1.3 | 3         |
| 3  | Time Course and Sex Effects of α-Linolenic Acid-Rich and DHA-Rich Supplements on Human Plasma<br>Oxylipins: A Randomized Double-Blind Crossover Trial. Journal of Nutrition, 2021, 151, 513-522.                                                                                            | 1.3 | 19        |
| 4  | Oils Rich in α-Linolenic Acid or Docosahexaenoic Acid Have Distinct Effects on Plasma Oxylipin and<br>Adiponectin Concentrations and on Monocyte Bioenergetics in Women with Obesity. Journal of<br>Nutrition, 2021, 151, 3053-3066.                                                        | 1.3 | 10        |
| 5  | Alpha-linolenic acid enhances the phagocytic and secretory functions of alternatively activated<br>macrophages in part via changes to the oxylipin profile. International Journal of Biochemistry and<br>Cell Biology, 2020, 119, 105662.                                                   | 1.2 | 22        |
| 6  | Spleen Oxylipin and <scp>Polyunsaturated Fatty Acid</scp> Profiles are Altered by Dietary Source of <scp>Polyunsaturated Fatty Acid</scp> and by Sex. Lipids, 2020, 55, 261-270.                                                                                                            | 0.7 | 4         |
| 7  | The Cardioprotective Role of Flaxseed in the Prevention of Doxorubicin- and Trastuzumab-Mediated Cardiotoxicity in C57BL/6 Mice. Journal of Nutrition, 2020, 150, 2353-2363.                                                                                                                | 1.3 | 18        |
| 8  | High Dietary Protein Does Not Alter Renal Prostanoids and Other Oxylipins in Normal Mice or in<br>Those with Inherited Kidney Disease. Journal of Nutrition, 2020, 150, 1135-1143.                                                                                                          | 1.3 | 0         |
| 9  | Cyclooxygenase 2 inhibition slows disease progression and improves the altered renal lipid mediator profile in the Pkd2WS25/â^' mouse model of autosomal dominant polycystic kidney disease. Journal of Nephrology, 2019, 32, 401-409.                                                      | 0.9 | 9         |
| 10 | The Brain Oxylipin Profile Is Resistant to Modulation by Dietary nâ€6 and nâ€3 Polyunsaturated Fatty Acids<br>in Male and Female Rats. Lipids, 2019, 54, 67-80.                                                                                                                             | 0.7 | 27        |
| 11 | Adipose tissue oxylipin profiles vary by anatomical site and are altered by dietary linoleic acid in rats.<br>Prostaglandins Leukotrienes and Essential Fatty Acids, 2019, 141, 24-32.                                                                                                      | 1.0 | 9         |
| 12 | Dietary ALA, EPA and DHA have distinct effects on oxylipin profiles in female and male rat kidney, liver<br>and serum. Journal of Nutritional Biochemistry, 2018, 57, 228-237.                                                                                                              | 1.9 | 34        |
| 13 | Linoleic acid derived oxylipins are elevated in kidney and liver and reduced in serum in rats given a<br>high-protein diet. Journal of Nutritional Biochemistry, 2018, 61, 40-47.                                                                                                           | 1.9 | 6         |
| 14 | Dietary LA and sex effects on oxylipin profiles in rat kidney, liver, and serum differ from their effects<br>on PUFAs. Journal of Lipid Research, 2017, 58, 1702-1712.                                                                                                                      | 2.0 | 41        |
| 15 | Lack of Benefit of Early Intervention with Dietary Flax and Fish Oil and Soy Protein in Orthologous<br>Rodent Models of Human Hereditary Polycystic Kidney Disease. PLoS ONE, 2016, 11, e0155790.                                                                                           | 1.1 | 10        |
| 16 | Dietary flax oil rich in α-linolenic acid reduces renal disease and oxylipin abnormalities, including<br>formation of docosahexaenoic acid derived oxylipins in the CD1-pcy/pcy mouse model of<br>nephronophthisis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 94, 83-89. | 1.0 | 10        |
| 17 | Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Advances in Nutrition, 2015,<br>6, 513-540.                                                                                                                                                                          | 2.9 | 524       |
| 18 | Cyclooxygenase product inhibition with acetylsalicylic acid slows disease progression in the<br>Han:SPRD-Cy rat model of polycystic kidney disease. Prostaglandins and Other Lipid Mediators, 2015,<br>116-117, 19-25.                                                                      | 1.0 | 18        |

Harold M. Aukema

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Renal cyclooxygenase and lipoxygenase products are altered in polycystic kidneys and by dietary soy<br>protein and fish oil treatment in the Han:SPRDâ€ <i>Cy</i> rat. Molecular Nutrition and Food Research,<br>2014, 58, 768-781.                        | 1.5 | 16        |
| 20 | Renal Cyclooxygenase Products are Higher and Lipoxygenase Products are Lower in Early Disease in the <i>pcy</i> Mouse Model of Adolescent Nephronophthisis. Lipids, 2014, 49, 39-47.                                                                       | 0.7 | 10        |
| 21 | Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in<br>the JCR:LA- <i>cp</i> rat, a model of the metabolic syndrome. British Journal of Nutrition, 2013, 110, 11-19.                                      | 1.2 | 27        |
| 22 | A dietary conjugated linoleic acid treatment that slows renal disease progression alters renal<br>cyclooxygenase-2-derived prostanoids in the Han: SPRD-cy rat. Journal of Nutritional Biochemistry,<br>2012, 23, 908-914.                                 | 1.9 | 14        |
| 23 | Distinctive effects of plant protein sources on renal disease progression and associated cardiac hypertrophy in experimental kidney disease. Molecular Nutrition and Food Research, 2011, 55, 1044-1051.                                                   | 1.5 | 24        |
| 24 | Long-Term High Intake of Whole Proteins Results in Renal Damage in Pigs. Journal of Nutrition, 2010, 140, 1646-1652.                                                                                                                                       | 1.3 | 43        |
| 25 | Dietary soy protein reduces early renal disease progression and alters prostanoid production in obese fa/fa Zucker rats. Journal of Nutritional Biochemistry, 2008, 19, 255-262.                                                                           | 1.9 | 12        |
| 26 | COX-2 expression in cystic kidneys is dependent on dietary n-3 fatty acid compositionâ~†. Journal of<br>Nutritional Biochemistry, 2007, 18, 806-812.                                                                                                       | 1.9 | 7         |
| 27 | Modulation of renal injury in pcy mice by dietary fat containing nâ^'3 fatty acids depends on the level and type of fat. Lipids, 2004, 39, 207-214.                                                                                                        | 0.7 | 45        |
| 28 | Overexpression of kidney phosphatidylinositol 4-kinasel <sup>2</sup> and phospholipase Cl <sup>3</sup> 1 proteins in two rodent<br>models of polycystic kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002,<br>1587, 99-106. | 1.8 | 9         |