
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737384/publications.pdf Version: 2024-02-01

ALEY RATEMAN

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	13.7	21,074
2	The Pfam protein families database. Nucleic Acids Research, 2007, 36, D281-D288.	6.5	6,372
3	Pfam: the protein families database. Nucleic Acids Research, 2014, 42, D222-D230.	6.5	5,425
4	The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 2016, 44, D279-D285.	6.5	5,391
5	UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 2021, 49, D480-D489.	6.5	4,709
6	HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 2011, 39, W29-W37.	6.5	4,492
7	miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 2006, 34, D140-D144.	6.5	4,192
8	The Pfam protein families database in 2019. Nucleic Acids Research, 2019, 47, D427-D432.	6.5	3,937
9	The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 2019, 47, W636-W641.	6.5	3,820
10	The Pfam protein families database. Nucleic Acids Research, 2012, 40, D290-D301.	6.5	3,306
11	The Pfam protein families database. Nucleic Acids Research, 2004, 32, 138D-141.	6.5	3,084
12	Pfam: The protein families database in 2021. Nucleic Acids Research, 2021, 49, D412-D419.	6.5	3,068
13	Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417, 141-147.	13.7	2,940
14	The Pfam protein families database. Nucleic Acids Research, 2010, 38, D211-D222.	6.5	2,693
15	The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research, 2021, 49, D325-D334.	6.5	2,416
16	The Pfam Protein Families Database. Nucleic Acids Research, 2002, 30, 276-280.	6.5	2,067
17	Pfam: clans, web tools and services. Nucleic Acids Research, 2006, 34, D247-D251.	6.5	2,030
18	Highly accurate protein structure prediction for the human proteome. Nature, 2021, 596, 590-596.	13.7	1,773

#	Article	IF	CITATIONS
19	InterPro: the integrative protein signature database. Nucleic Acids Research, 2009, 37, D211-D215.	6.5	1,712
20	HMMER web server: 2018 update. Nucleic Acids Research, 2018, 46, W200-W204.	6.5	1,432
21	The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 2021, 49, D344-D354.	6.5	1,385
22	InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Research, 2017, 45, D190-D199.	6.5	1,358
23	Rfam: an RNA family database. Nucleic Acids Research, 2003, 31, 439-441.	6.5	1,296
24	InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 2019, 47, D351-D360.	6.5	1,291
25	Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 2004, 33, D121-D124.	6.5	1,255
26	The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 2018, 46, D624-D632.	6.5	1,234
27	Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 2013, 41, e121-e121.	6.5	1,214
28	The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research, 2015, 43, D213-D221.	6.5	1,205
29	The Pfam Protein Families Database. Nucleic Acids Research, 2000, 28, 263-266.	6.5	1,173
30	MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2012, 40, D343-D350.	6.5	1,047
31	Rfam 12.0: updates to the RNA families database. Nucleic Acids Research, 2015, 43, D130-D137.	6.5	1,000
32	InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research, 2012, 40, D306-D312.	6.5	921
33	A new genomic blueprint of the human gut microbiota. Nature, 2019, 568, 499-504.	13.7	901
34	HMMER web server: 2015 update. Nucleic Acids Research, 2015, 43, W30-W38.	6.5	849
35	Rfam: updates to the RNA families database. Nucleic Acids Research, 2009, 37, D136-D140.	6.5	820
36	Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 2018, 46, D335-D342.	6.5	819

#	Article	IF	CITATIONS
37	MEROPS: the peptidase database. Nucleic Acids Research, 2010, 38, D227-D233.	6.5	786
38	<i>MEROPS</i> : the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2014, 42, D503-D509.	6.5	782
39	Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 2013, 41, D226-D232.	6.5	745
40	Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Research, 1998, 26, 320-322.	6.5	644
41	The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Research, 2003, 31, 315-318.	6.5	640
42	A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology, 2021, 39, 105-114.	9.4	628
43	Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Research, 1999, 27, 260-262.	6.5	533
44	Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research, 2018, 46, D802-D808.	6.5	489
45	InterPro, progress and status in 2005. Nucleic Acids Research, 2004, 33, D201-D205.	6.5	478
46	Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 2021, 49, D192-D200.	6.5	475
47	The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends in Biochemical Sciences, 1997, 22, 12-13.	3.7	459
48	New developments in the InterPro database. Nucleic Acids Research, 2007, 35, D224-D228.	6.5	444
49	The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD) 1 1Edited by P. E. Wight. Journal of Molecular Biology, 2000, 299, 1113-1119.	2.0	402
50	Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends in Biochemical Sciences, 2000, 25, 481-482.	3.7	371
51	Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Research, 2011, 39, D141-D145.	6.5	355
52	Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs Rewires Protein Interaction Networks. Molecular Cell, 2012, 46, 871-883.	4.5	344
53	Non oding RNA Analysis Using the Rfam Database. Current Protocols in Bioinformatics, 2018, 62, e51.	25.8	309
54	Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinformatics, 2014, 15, 7.	1.2	298

#	Article	IF	CITATIONS
55	Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 2013, 14, R11.	13.9	296
56	MGnify: the microbiome analysis resource in 2020. Nucleic Acids Research, 2020, 48, D570-D578.	6.5	296
57	iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics, 2005, 21, 410-412.	1.8	295
58	The tify family previously known as ZIM. Trends in Plant Science, 2007, 12, 239-244.	4.3	283
59	The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission. Cell Host and Microbe, 2010, 8, 377-387.	5.1	267
60	QuickTree: building huge Neighbour-Joining trees of protein sequences. Bioinformatics, 2002, 18, 1546-1547.	1.8	249
61	Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Research, 2012, 41, D70-D82.	6.5	243
62	Predicting active site residue annotations in the Pfam database. BMC Bioinformatics, 2007, 8, 298.	1.2	239
63	Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Research, 2019, 47, 10994-11006.	6.5	236
64	The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends in Biochemical Sciences, 2003, 28, 234-237.	3.7	209
65	The PASTA domain: a β-lactam-binding domain. Trends in Biochemical Sciences, 2002, 27, 438-440.	3.7	204
66	DUFs: families in search of function. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1148-1152.	0.7	203
67	The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO Journal, 1999, 18, 297-305.	3.5	186
68	Large-scale screening for novel low-affinity extracellular protein interactions. Genome Research, 2008, 18, 622-630.	2.4	184
69	EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Research, 2018, 46, D726-D735.	6.5	175
70	RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Research, 2017, 45, D128-D134.	6.5	174
71	Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Current Opinion in Structural Biology, 2013, 23, 443-450.	2.6	166
72	The Evolution of the DLK1-DIO3 Imprinted Domain in Mammals. PLoS Biology, 2008, 6, e135.	2.6	162

#	Article	IF	CITATIONS
73	The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases. BMC Bioinformatics, 2004, 5, 109.	1.2	158
74	iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Research, 2014, 42, D364-D373.	6.5	156
75	InterPro: An integrated documentation resource for protein families, domains and functional sites. Briefings in Bioinformatics, 2002, 3, 225-235.	3.2	155
76	RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 2019, 47, D221-D229.	6.5	153
77	Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Computational Biology, 2016, 12, e1004862.	1.5	147
78	Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains. Human Molecular Genetics, 1997, 6, 1483-1489.	1.4	141
79	Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Research, 2022, 50, D996-D1003.	6.5	141
80	Using deep learning to annotate the protein universe. Nature Biotechnology, 2022, 40, 932-937.	9.4	133
81	The ENTH domain. FEBS Letters, 2002, 513, 11-18.	1.3	131
82	TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Research, 2014, 42, D922-D925.	6.5	125
83	The PLAT domain: a new piece in the PKD1 puzzle. Current Biology, 1999, 9, R588-S2.	1.8	122
84	The HMMER Web Server for Protein Sequence Similarity Search. Current Protocols in Bioinformatics, 2017, 60, 3.15.1-3.15.23.	25.8	119
85	Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biology, 2002, 3, research0068.1.	13.9	117
86	Pfam 10 years on: 10 000 families and still growing. Briefings in Bioinformatics, 2008, 9, 210-219.	3.2	114
87	Protein interactions in human genetic diseases. Genome Biology, 2008, 9, R9.	13.9	110
88	Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings in Bioinformatics, 2021, 22, 642-663.	3.2	110
89	A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Research, 2013, 41, 4549-4564.	6.5	108
90	The European Bioinformatics Institute in 2016: Data growth and integration. Nucleic Acids Research, 2016, 44, D20-D26.	6.5	108

#	Article	IF	CITATIONS
91	The evolution of protein domain families. Biochemical Society Transactions, 2009, 37, 751-755.	1.6	106
92	RNAcentral: an international database of ncRNA sequences. Nucleic Acids Research, 2015, 43, D123-D129.	6.5	103
93	New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiology, 2003, 3, 3.	1.3	98
94	EBI metagenomics in 2016 - an expanding and evolving resource for the analysis and archiving of metagenomic data. Nucleic Acids Research, 2016, 44, D595-D603.	6.5	97
95	Metazoan Scc4 Homologs Link Sister Chromatid Cohesion to Cell and Axon Migration Guidance. PLoS Biology, 2006, 4, e242.	2.6	95
96	Representative Proteomes: A Stable, Scalable and Unbiased Proteome Set for Sequence Analysis and Functional Annotation. PLoS ONE, 2011, 6, e18910.	1.1	94
97	Quantifying the mechanisms of domain gain in animal proteins. Genome Biology, 2010, 11, R74.	13.9	93
98	The BON domain: a putative membrane-binding domain. Trends in Biochemical Sciences, 2003, 28, 352-355.	3.7	89
99	Asparagine Peptide Lyases. Journal of Biological Chemistry, 2011, 286, 38321-38328.	1.6	89
100	The PA domain: A proteaseâ€associated domain. Protein Science, 2000, 9, 1930-1934.	3.1	88
101	Dosage Sensitivity Shapes the Evolution of Copy-Number Varied Regions. PLoS ONE, 2010, 5, e9474.	1.1	88
102	Structure and distribution of pentapeptide repeats in bacteria. Protein Science, 1998, 7, 1477-1480.	3.1	87
103	Integrating biological data – the Distributed Annotation System. BMC Bioinformatics, 2008, 9, S3.	1.2	87
104	The SIS domain: a phosphosugar-binding domain. Trends in Biochemical Sciences, 1999, 24, 94-95.	3.7	78
105	The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics, 2005, 21, 1301-1303.	1.8	78
106	Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics, 2013, 14, 327.	1.2	74
107	Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. Journal of Food Science, 2020, 85, 455-464.	1.5	72
108	RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Research, 2011, 39, 5845-5852.	6.5	71

#	Article	IF	CITATIONS
109	TheDUTT1Gene, a Novel NCAM Family Member Is Expressed in Developing Murine Neural Tissues and Has an Unusually Broad Pattern of Expression. Molecular and Cellular Neurosciences, 1998, 11, 29-35.	1.0	68
110	The PepSY domain: a regulator of peptidase activity in the microbial environment?. Trends in Biochemical Sciences, 2004, 29, 169-172.	3.7	68
111	Integrating sequence and structural biology with DAS. BMC Bioinformatics, 2007, 8, 333.	1.2	68
112	RNAcentral: A vision for an international database of RNA sequences. Rna, 2011, 17, 1941-1946.	1.6	67
113	Members of the immunoglobulin superfamily in bacteria. Protein Science, 1996, 5, 1939-1941.	3.1	66
114	The RNA WikiProject: Community annotation of RNA families. Rna, 2008, 14, 2462-2464.	1.6	66
115	Identifying Protein Domains with the Pfam Database. Current Protocols in Bioinformatics, 2008, 23, Unit 2.5.	25.8	61
116	An Introduction to Hidden Markov Models. , 2007, Appendix 3, Appendix 3A.		60
117	Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors. Bioinformatics, 2009, 25, 159-162.	1.8	59
118	Biocurators and Biocuration: surveying the 21st century challenges. Database: the Journal of Biological Databases and Curation, 2012, 2012, bar059-bar059.	1.4	59
119	Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nature Structural and Molecular Biology, 2021, 28, 210-219.	3.6	59
120	Mining the draft human genome. Nature, 2001, 409, 827-828.	13.7	58
121	Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biology, 2020, 21, 244.	3.8	58
122	R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nature Communications, 2021, 12, 3494.	5.8	58
123	Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nature Microbiology, 2022, 7, 169-179.	5.9	58
124	Cloud computing. Bioinformatics, 2009, 25, 1475-1475.	1.8	56
125	The COMBREX Project: Design, Methodology, and Initial Results. PLoS Biology, 2013, 11, e1001638.	2.6	54
126	Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature, 2022, 609, 144-150.	13.7	52

#	Article	IF	CITATIONS
127	Structure of the <i>Escherichia coli</i> ProQ RNA-binding protein. Rna, 2017, 23, 696-711.	1.6	50
128	SCOOP: a simple method for identification of novel protein superfamily relationships. Bioinformatics, 2007, 23, 809-814.	1.8	49
129	Enhanced protein domain discovery by using language modeling techniques from speech recognition. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4516-4520.	3.3	47
130	The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences. Bioinformatics, 2020, 36, 2636-2642.	1.8	47
131	Reuse of structural domain–domain interactions in protein networks. BMC Bioinformatics, 2007, 8, 259.	1.2	44
132	How to use the <scp><i>MEROPS</i></scp> database and website to help understand peptidase specificity. Protein Science, 2021, 30, 83-92.	3.1	44
133	Databases, data tombs and dust in the wind. Bioinformatics, 2008, 24, 2127-2128.	1.8	42
134	The metagenomic data life-cycle: standards and best practices. GigaScience, 2017, 6, 1-11.	3.3	42
135	Unifying the known and unknown microbial coding sequence space. ELife, 2022, 11, .	2.8	41
136	Distant homology recognition using structural classification of proteins. , 1997, 29, 105-112.		40
137	Using the MEROPS Database for Proteolytic Enzymes and Their Inhibitors and Substrates. Current Protocols in Bioinformatics, 2014, 48, 1.25.1-33.	25.8	39
138	Curators of the world unite: the International Society of Biocuration. Bioinformatics, 2010, 26, 991-991.	1.8	38
139	AntiFam: a tool to help identify spurious ORFs in protein annotation. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas003-bas003.	1.4	38
140	INCREASING THE IMPACT OF BIOINFORMATICS. Bioinformatics, 2005, 21, 1-1.	1.8	37
141	SnoPatrol: how many snoRNA genes are there?. Journal of Biology, 2010, 9, 4.	2.7	37
142	UniProt-DAAC: domain architecture alignment and classification, a new method for automatic functional annotation in UniProtKB. Bioinformatics, 2016, 32, 2264-2271.	1.8	37
143	Ten Simple Rules for Editing Wikipedia. PLoS Computational Biology, 2010, 6, e1000941.	1.5	36
144	Visualizing profile-profile alignment: pairwise HMM logos. Bioinformatics, 2005, 21, 2912-2913.	1.8	35

#	Article	IF	CITATIONS
145	ProServer: a simple, extensible Perl DAS server. Bioinformatics, 2007, 23, 1568-1570.	1.8	34
146	The European Bioinformatics Institute (EMBL-EBI) in 2021. Nucleic Acids Research, 2022, 50, D11-D19.	6.5	34
147	Modifier Effects between Regulatory and Protein-Coding Variation. PLoS Genetics, 2008, 4, e1000244.	1.5	33
148	Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Molecular Systems Biology, 2021, 17, e9880.	3.2	33
149	Bacterial Pleckstrin Homology Domains: A Prokaryotic Origin for the PH Domain. Journal of Molecular Biology, 2010, 396, 31-46.	2.0	32
150	Towards BioDBcore: a community-defined information specification for biological databases. Nucleic Acids Research, 2011, 39, D7-D10.	6.5	32
151	The rise and fall of supervised machine learning techniques. Bioinformatics, 2011, 27, 3331-3332.	1.8	32
152	The Importance of Biological Databases in Biological Discovery. Current Protocols in Bioinformatics, 2015, 50, 1.1.1-1.1.8.	25.8	32
153	Editorial. Bioinformatics, 2009, 25, 429-429.	1.8	31
154	Making your database available through Wikipedia: the pros and cons. Nucleic Acids Research, 2012, 40, D9-D12.	6.5	31
155	InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research, 2012, 40, 4725-4725.	6.5	31
156	Pepsin homologues in bacteria. BMC Genomics, 2009, 10, 437.	1.2	30
157	Towards BioDBcore: a community-defined information specification for biological databases. Database: the Journal of Biological Databases and Curation, 2011, 2011, baq027-baq027.	1.4	30
158	Origins of peptidases. Biochimie, 2019, 166, 4-18.	1.3	30
159	A member of the immunoglobulin superfamily in bacteriophage T4. Virus Genes, 1997, 14, 163-165.	0.7	28
160	HMM-based databases in InterPro. Briefings in Bioinformatics, 2002, 3, 236-245.	3.2	28
161	The TROVE module: a common element in Telomerase, Ro and Vault ribonucleoproteins. BMC Bioinformatics, 2003, 4, 49.	1.2	28
162	Tandem domain swapping: determinants of multidomain protein misfolding. Current Opinion in Structural Biology, 2019, 58, 97-104.	2.6	28

#	Article	IF	CITATIONS
163	Folding the unfoldable: using AlphaFold to explore spurious proteins. Bioinformatics Advances, 2022, 2, .	0.9	28
164	Fibronectin type III domains in yeast detected by a hidden Markov model. Current Biology, 1996, 6, 1544-1547.	1.8	27
165	The SGS3 protein involved in PTGS finds a family. BMC Bioinformatics, 2002, 3, 21.	1.2	27
166	Bioimage informatics: a new category in <i>Bioinformatics</i> . Bioinformatics, 2012, 28, 1057-1057.	1.8	27
167	Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes. Nucleic Acids Research, 2019, 47, D564-D572.	6.5	27
168	Ten simple rules to make your computing more environmentally sustainable. PLoS Computational Biology, 2021, 17, e1009324.	1.5	27
169	Novel protein domains and motifs in the marine planctomycete Rhodopirellula baltica. FEMS Microbiology Letters, 2004, 236, 333-340.	0.7	25
170	The yeast noncoding RNA interaction network. Rna, 2017, 23, 1479-1492.	1.6	25
171	Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiology, 2003, 3, 1.	1.3	24
172	Experience using web services for biological sequence analysis. Briefings in Bioinformatics, 2008, 9, 493-505.	3.2	24
173	The Characterisation of Three Types of Genes that Overlie Copy Number Variable Regions. PLoS ONE, 2011, 6, e14814.	1.1	24
174	Outline structures for the extracellular domains of the fibroblast growth factor receptors. Nature Structural and Molecular Biology, 1995, 2, 1068-1074.	3.6	23
175	Domain atrophy creates rare cases of functional partial protein domains. Genome Biology, 2015, 16, 88.	3.8	23
176	The challenge of increasing Pfam coverage of the human proteome. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat023.	1.4	22
177	TreeGrafter: phylogenetic tree-based annotation of proteins with Gene Ontology terms and other annotations. Bioinformatics, 2019, 35, 518-520.	1.8	22
178	Acetylation of Surface Carbohydrates in Bacterial Pathogens Requires Coordinated Action of a Two-Domain Membrane-Bound Acyltransferase. MBio, 2020, 11, .	1.8	22
179	Identifying Protein Domains with the Pfam Database. Current Protocols in Bioinformatics, 2003, 1, 2.5.1-2.5.19.	25.8	20
180	CASP2 knowledge-based approach to distant homology recognition and fold prediction in CASP4. Proteins: Structure, Function and Bioinformatics, 2001, 45, 76-85.	1.5	19

#	Article	IF	CITATIONS
181	The use of structure information to increase alignment accuracy does not aid homologue detection with profile HMMs. Bioinformatics, 2002, 18, 1243-1249.	1.8	19
182	GO annotation in InterPro: why stability does not indicate accuracy in a sea of changing annotations. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw027.	1.4	19
183	Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes. Genome Biology and Evolution, 2021, 13, .	1.1	19
184	Searching databases to find protein domain organization. Advances in Protein Chemistry, 2000, 54, 137-157.	4.4	18
185	Enhanced protein domain discovery using taxonomy. BMC Bioinformatics, 2004, 5, 56.	1.2	18
186	Eleven quick tips to build a usable REST API for life sciences. PLoS Computational Biology, 2018, 14, e1006542.	1.5	18
187	Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources. F1000Research, 2016, 5, 160.	0.8	16
188	DASMI: exchanging, annotating and assessing molecular interaction data. Bioinformatics, 2009, 25, 1321-1328.	1.8	15
189	Defining the remarkable structural malleability of a bacterial surface protein Rib domain implicated in infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26540-26548.	3.3	15
190	Periscope Proteins are variable-length regulators of bacterial cell surface interactions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
191	Novel protein domains and motifs in the marine planctomycete Rhodopirellula baltica. FEMS Microbiology Letters, 2004, 236, 333-340.	0.7	15
192	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	1.5	13
193	Genome3D: integrating a collaborative data pipeline to expand the depth and breadth of consensus protein structure annotation. Nucleic Acids Research, 2020, 48, D314-D319.	6.5	13
194	Pfam: the protein families database. , 2005, , .		12
195	The crystal structure of a bacterial Sufuâ€like protein defines a novel group of bacterial proteins that are similar to the Nâ€terminal domain of human Sufu. Protein Science, 2010, 19, 2131-2140.	3.1	12
196	Time to underpin Wikipedia wisdom. Nature, 2010, 468, 765-765.	13.7	12
197	Computer Tools and Algorithms for Origami Tessellation Design. , 2002, , 121-127.		11
198	Gene Unprediction with Spurio: A tool to identify spurious protein sequences. F1000Research, 2018, 7, 261.	0.8	11

#	Article	IF	CITATIONS
199	The Ensembl COVID-19 resource: ongoing integration of public SARS-CoV-2 data. Nucleic Acids Research, 2022, 50, D765-D770.	6.5	10
200	The structure of Jann_2411 (DUF1470) from <i>Jannaschia</i> sp. at 1.45â€Ã resolution reveals a new fold (the ABATE domain) and suggests its possible role as a transcription regulator. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1198-1204.	0.7	9
201	The structure of BVU2987 fromBacteroides vulgatusreveals a superfamily of bacterial periplasmic proteins with possible inhibitory function. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1265-1273.	0.7	8
202	LUD, a new protein domain associated with lactate utilization. BMC Bioinformatics, 2013, 14, 341.	1.2	8
203	ISCB Computational Biology Wikipedia Competition. PLoS Computational Biology, 2013, 9, e1003242.	1.5	8
204	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	1.4	8
205	ELIXIR pilot action: Marine metagenomics – towards a domain specific set of sustainable services. F1000Research, 2017, 6, 70.	0.8	8
206	A comparison of Pfam and MEROPS: two databases, one comprehensive, and one specialised. BMC Bioinformatics, 2003, 4, 17.	1.2	7
207	Discovery of fibrillar adhesins across bacterial species. BMC Genomics, 2021, 22, 550.	1.2	7
208	Structural genomics meets computational biology. Bioinformatics, 2006, 22, 2319-2319.	1.8	6
209	The structure of pyogenecin immunity protein, a novel bacteriocin-like immunity protein from Streptococcus pyogenes. BMC Structural Biology, 2009, 9, 75.	2.3	6
210	The complexity, challenges and benefits of comparing two transporter classification systems in TCDB and Pfam. Briefings in Bioinformatics, 2015, 16, 865-872.	3.2	6
211	TADOSS: computational estimation of tandem domain swap stability. Bioinformatics, 2019, 35, 2507-2508.	1.8	6
212	Exploring Non oding RNAs in RNAcentral. Current Protocols in Bioinformatics, 2020, 71, e104.	25.8	6
213	The SHOCT Domain: A Widespread Domain Under-Represented in Model Organisms. PLoS ONE, 2013, 8, e57848.	1.1	6
214	Large-Scale Discovery of Microbial Fibrillar Adhesins and Identification of Novel Members of Adhesive Domain Families. Journal of Bacteriology, 2022, 204, .	1.0	6
215	<i>Caenorhabditis elegans</i> AF4/FMR2 Family Homolog <i>affl-2</i> Regulates Heat-Shock-Induced Gene Expression. Genetics, 2020, 215, 1039-1054.	1.2	5
216	The thrombospondin module 1 domain of the matricellular protein CCN3 shows an atypical disulfide pattern and incomplete CWR layers. Acta Crystallographica Section D: Structural Biology, 2020, 76, 124-134.	1.1	5

#	Article	IF	CITATIONS
217	BioinformaticsThe new home for protein sequence motifs. Bioinformatics, 2006, 22, 2-2.	1.8	4
218	Metagenomics approach for Polymyxa betae genome assembly enables comparative analysis towards deciphering the intracellular parasitic lifestyle of the plasmodiophorids. Genomics, 2022, 114, 9-22.	1.3	4
219	Ten Simple Rules for Chairing a Scientific Session. PLoS Computational Biology, 2009, 5, e1000517.	1.5	3
220	The YARHG Domain: An Extracellular Domain in Search of a Function. PLoS ONE, 2012, 7, e35575.	1.1	3
221	Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila. BMC Bioinformatics, 2013, 14, 265.	1.2	3
222	New Leadership for Bioinformatics. Bioinformatics, 2004, 20, 1821-1821.	1.8	2
223	3DPatch: fast 3D structure visualization with residue conservation. Bioinformatics, 2019, 35, 332-334.	1.8	2
224	Software patents in Bioinformatics. Bioinformatics, 2006, 22, 1415-1415.	1.8	1
225	DATABASE, The Journal of Biological Databases and Curation, is now the official journal of the International Society for Biocuration. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat077-bat077.	1.4	1
226	Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis. BMC Bioinformatics, 2014, 15, 75.	1.2	1
227	Rapid identification of novel protein families using similarity searches. F1000Research, 2018, 7, 1975.	0.8	1
228	An update from the Bioinformatics Editors. Bioinformatics, 2005, 21, 4319-4319.	1.8	0
229	Modelling structural rearrangements in proteins using Euclidean distance matrices. F1000Research, 0, 9, 728.	0.8	0