
Chandra Prakash Sharma'

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eudragit encapsulated cationic poly (lactic-co-glycolic acid) nanoparticles in targeted delivery of capecitabine for augmented colon carcinoma therapy. Journal of Drug Delivery Science and Technology, 2018, 46, 302-311.	3.0	12
2	Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. European Polymer Journal, 2017, 93, 682-694.	5.4	36
3	Europium Doped Calcium Deficient Hydroxyapatite as Theranostic Nanoplatforms: Effect of Structure and Aspect Ratio. ACS Biomaterials Science and Engineering, 2017, 3, 3588-3595.	5.2	24
4	Neodymium doped hydroxyapatite theranostic nanoplatforms for colon specific drug delivery applications. Colloids and Surfaces B: Biointerfaces, 2016, 145, 539-547.	5.0	29
5	Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Materials Science and Engineering C, 2016, 66, 40-50.	7.3	48
6	Hemocompatible curcumin–dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohydrate Polymers, 2016, 137, 497-507.	10.2	69
7	Elastin-like recombinamers with acquired functionalities for gene-delivery applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 3166-3178.	4.0	19
8	Gold nanoparticle incorporated polymer/bioactive glass composite for controlled drug delivery application. Colloids and Surfaces B: Biointerfaces, 2015, 126, 280-287.	5.0	36
9	Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response. Colloids and Surfaces B: Biointerfaces, 2015, 128, 8-16.	5.0	3
10	Simultaneous Effect of Thiolation and Carboxylation of Chitosan Particles Towards Mucoadhesive Oral Insulin Delivery Applications: An <i>In Vitro</i> and <i>In</i> <i>Vivo</i> Evaluation. Journal of Biomedical Nanotechnology, 2015, 11, 165-176.	1.1	19
11	Recent Advances in the Oral Delivery of Insulin. Recent Patents on Drug Delivery and Formulation, 2014, 8, 155-159.	2.1	12
12	Enhanced intracellular uptake and endocytic pathway selection mediated by hemocompatible ornithine grafted chitosan polycation for gene delivery. Colloids and Surfaces B: Biointerfaces, 2014, 122, 792-800.	5.0	13
13	Pullulan–protamine as efficient haemocompatible gene delivery vector: Synthesis and in vitro characterization. Carbohydrate Polymers, 2014, 102, 207-215.	10.2	35
14	Cell-mimetic coatings for immune spheres. Colloids and Surfaces B: Biointerfaces, 2014, 123, 845-851.	5.0	1
15	Supramolecular curcumin–barium prodrugs for formulating with ceramic particles. Colloids and Surfaces B: Biointerfaces, 2014, 122, 301-308.	5.0	10
16	Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers. CrystEngComm, 2014, 16, 9033-9042.	2.6	47
17	Cucurbituril/hydroxyapatite based nanoparticles for potential use in theranostic applications. CrystEngComm, 2014, 16, 6929-6936.	2.6	18
18	pH Sensitive Thiolated Cationic Hydrogel for Oral Insulin Delivery. Journal of Biomedical Nanotechnology, 2014, 10, 642-650.	1.1	6

#	Article	IF	CITATIONS
19	Biomimetic mucin modified PLGA nanoparticles for enhanced blood compatibility. Journal of Colloid and Interface Science, 2013, 409, 237-244.	9.4	33
20	InÂvitro evaluation of quaternized polydimethylaminoethylmethacrylate sub-microparticles for oral insulin delivery. Journal of Biomaterials Applications, 2013, 28, 62-73.	2.4	9
21	InÂvitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. Journal of Biomaterials Applications, 2013, 27, 811-827.	2.4	64
22	Pullulan-histone antibody nanoconjugates for the removal of chromatin fragments from systemic circulation. Biomaterials, 2013, 34, 6328-6338.	11.4	27
23	Oral delivery of therapeutic protein/peptide for diabetes – Future perspectives. International Journal of Pharmaceutics, 2013, 440, 48-62.	5.2	137
24	In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydrate Polymers, 2013, 95, 441-448.	10.2	32
25	Nanomedicine for gene therapy. Drug Delivery and Translational Research, 2013, 3, 437-445.	5.8	13
26	N-hydroxypropyltrimethylammonium polydimethylaminoethylmethacrylate sub-microparticles for oral delivery of insulin—An in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2013, 107, 205-212.	5.0	7
27	Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles. Colloids and Surfaces B: Biointerfaces, 2013, 108, 219-228.	5.0	15
28	PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Carbohydrate Polymers, 2013, 95, 1-8.	10.2	67
29	Glucosylated polymeric nanoparticles: A sweetened approach against blood compatibility paradox. Colloids and Surfaces B: Biointerfaces, 2013, 108, 337-344.	5.0	19
30	Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 101, 196-204.	5.0	49
31	<i>In Vitro</i> Evaluation of Thiolated Polydimethylaminoethylmethacrylate Hydrogel Sub-Microparticles for Oral Insulin Delivery. Journal of Biomedical Nanotechnology, 2013, 9, 590-600.	1.1	11
32	<i>In Vitro</i> Cell Culture Evaluation and <i>In Vivo</i> Efficacy of Amphiphilic Chitosan for Oral Insulin Delivery. Journal of Biomedical Nanotechnology, 2013, 9, 167-176.	1.1	7
33	Differential Healing of Full Thickness Rabbit Skin Wound by Fibroblast Loaded Chitosan Sponge. Journal of Biomaterials and Tissue Engineering, 2013, 3, 261-272.	0.1	14
34	Unraveling the Intracellular Efficacy of Dextran-Histidine Polycation as an Efficient Nonviral Gene Delivery System. Molecular Pharmaceutics, 2012, 9, 121-134.	4.6	37
35	Poly(lactide- <i>co</i> -glycolide)–Laponite–F68 Nanocomposite Vesicles through a Single-Step Double-Emulsion Method for the Controlled Release of Doxorubicin. Langmuir, 2012, 28, 4559-4564.	3.5	21
36	Green Synthesis of Silver Nanoparticles with Zingiber officinale Extract and Study of its Blood Compatibility. BioNanoScience, 2012, 2, 144-152.	3.5	49

#	Article	IF	CITATIONS
37	An overview of natural polymers for oral insulin delivery. Drug Discovery Today, 2012, 17, 784-792.	6.4	138
38	Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomaterials, 2012, 33, 6420-6429.	11.4	43
39	Blood Compatible Nanostructured Lipid Carriers for the Enhanced Delivery of Azidothymidine to Brain. Advanced Science Letters, 2012, 6, 47-55.	0.2	13
40	Calcium Phosphates as Drug Delivery Systems. Journal of Biomaterials and Tissue Engineering, 2012, 2, 269-279.	0.1	12
41	Synthesis, Characterization and Bio-Labeling Studies of Trypsin Stabilized Silver Quantum Clusters. Journal of Biomaterials and Tissue Engineering, 2012, 2, 299-306.	0.1	6
42	Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)-chitosan for oral drug delivery. Drug Delivery, 2011, 18, 227-235.	5.7	23
43	Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst, The, 2011, 136, 933-940.	3.5	246
44	Fluorescent and superparamagnetic hybrid quantum clusters for magnetic separation and imaging of cancer cells from blood. Nanoscale, 2011, 3, 4780.	5.6	50
45	Enhanced delivery of lopinavir to the CNS using Compritol [®] -based solid lipid nanoparticles. Therapeutic Delivery, 2011, 2, 25-35.	2.2	28
46	Use of quartz crystal nanobalance to study the binding and stabilization of albumin and doxycycline on a thin layer of hydroxyapatite. Applied Surface Science, 2011, 258, 1666-1669.	6.1	2
47	Targeted coadministration of sparingly soluble paclitaxel and curcumin into cancer cells by surface engineered magnetic nanoparticles. Journal of Materials Chemistry, 2011, 21, 15708.	6.7	21
48	Submicroparticles composed of amphiphilic chitosan derivative for oral insulin and curcumin release applications. Colloids and Surfaces B: Biointerfaces, 2011, 88, 722-728.	5.0	24
49	Tryptophan complexed hydroxyapatite nanoparticles for immunoglobulin adsorption. Journal of Materials Science: Materials in Medicine, 2011, 22, 2219-2229.	3.6	8
50	Folate mediated l-arginine modified oligo (alkylaminosiloxane) graft poly (ethyleneimine) for tumor targeted gene delivery. Biomaterials, 2011, 32, 3030-3041.	11.4	27
51	Folic acidâ€conjugated depolymerized quaternized chitosan as potential targeted gene delivery vector. Polymer International, 2011, 60, 1097-1106.	3.1	12
52	Effect of thiol functionalization on the hemoâ€compatibility of PLGA nanoparticles. Journal of Biomedical Materials Research - Part A, 2011, 99A, 607-617.	4.0	35
53	Bioadhesive hydrophobic chitosan microparticles for oral delivery of insulin: <i>In vitro</i> characterization and <i>in vivo</i> uptake studies. Journal of Applied Polymer Science, 2011, 119, 2902-2910.	2.6	47
54	Glutamineâ€chitosan microparticles as oral insulin delivery matrix: <i>In vitro</i> characterization. Journal of Applied Polymer Science, 2011, 122, 2374-2382.	2.6	14

#	Article	IF	CITATIONS
55	In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery. Carbohydrate Polymers, 2011, 84, 103-109.	10.2	47
56	Development of lauroyl sulfated chitosan for enhancing hemocompatibility of chitosan. Colloids and Surfaces B: Biointerfaces, 2011, 84, 561-570.	5.0	90
57	Development and evaluation of cyclodextrin complexed hydroxyapatite nanoparticles for preferential albumin adsorption. Colloids and Surfaces B: Biointerfaces, 2011, 85, 221-228.	5.0	18
58	Hemocompatible pullulan–polyethyleneimine conjugates for liver cell gene delivery: In vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomaterialia, 2011, 7, 370-379.	8.3	98
59	Spermine grafted galactosylated chitosan for improved nanoparticle mediated gene delivery. International Journal of Pharmaceutics, 2011, 410, 125-137.	5.2	58
60	Sensing of lead ions using glutathione mediated end to end assembled gold nanorod chains. Sensors and Actuators B: Chemical, 2011, 156, 791-797.	7.8	49
61	Intracellular Trafficking Mechanism and Cytosolic Protein Interactions of a Non Viral Gene Delivery Vector: Studies Based on Transferrin Conjugated Pullulan-PEI. Current Nanoscience, 2011, 7, 879-885.	1.2	6
62	Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug. International Journal of Ayurveda Research, 2011, 2, 14.	0.3	48
63	Folate mediated histidine derivative of quaternised chitosan as a gene delivery vector. International Journal of Pharmaceutics, 2010, 389, 176-185.	5.2	62
64	Dextran-protamine polycation: An efficient nonviral and haemocompatible gene delivery system. Colloids and Surfaces B: Biointerfaces, 2010, 81, 195-205.	5.0	40
65	Acyl modified chitosan derivatives for oral delivery of insulin and curcumin. Journal of Materials Science: Materials in Medicine, 2010, 21, 2133-2140.	3.6	49
66	Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin. Journal of Controlled Release, 2010, 147, 377-384.	9.9	117
67	Folate mediated in vitro targeting of depolymerised trimethylated chitosan having arginine functionality. Journal of Colloid and Interface Science, 2010, 348, 360-368.	9.4	52
68	Copper complexed polymer carriers for IgG adsorption. Journal of Colloid and Interface Science, 2010, 352, 178-185.	9.4	8
69	Dextran–glycidyltrimethylammonium chloride conjugate/DNA nanoplex: A potential non-viral and haemocompatible gene delivery system. International Journal of Pharmaceutics, 2010, 389, 195-206.	5.2	31
70	Enhanced in-vitro transfection and biocompatibility of l-arginine modified oligo (-alkylaminosiloxanes)-graft-polyethylenimine. Biomaterials, 2010, 31, 8759-8769.	11.4	27
71	Development and characterization of self-aggregated nanoparticles from anacardoylated chitosan as a carrier for insulin. Carbohydrate Polymers, 2010, 80, 285-290.	10.2	28
72	Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery. Acta Biomaterialia, 2010, 6, 3072-3080.	8.3	74

#	Article	IF	CITATIONS
73	Fatty Acid Conjugated Calcium Phosphate Nanoparticles for Protein Delivery. International Journal of Applied Ceramic Technology, 2010, 7, 129-138.	2.1	13
74	Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 209-218.	4.3	50
75	Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. Journal of Biomaterials Applications, 2010, 25, 291-366.	2.4	270
76	Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Journal of Controlled Release, 2009, 135, 144-151.	9.9	212
77	Studies on the condensation of depolymerized chitosans with DNA for preparing chitosanâ€DNA nanoparticles for gene delivery applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 282-292.	3.4	33
78	Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials, 2009, 30, 6655-6664.	11.4	105
79	Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 2009, 34, 641-678.	24.7	2,236
80	Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 41-48.	3.4	67
81	Challenges and advances in nanoparticle-based oral insulin delivery. Expert Review of Medical Devices, 2009, 6, 665-676.	2.8	60
82	Tricalcium Phosphate Delayed Release Formulation for Oral Delivery of Insulin: A Proof-of-Concept Study. Journal of Pharmaceutical Sciences, 2008, 97, 875-882.	3.3	23
83	Phthalyl chitosan–poly(ethylene oxide) semiâ€interpenetrating polymer network microparticles for oral protein delivery: An <i>in vitro</i> characterization. Journal of Applied Polymer Science, 2008, 110, 2787-2795.	2.6	21
84	Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene) Tj ETQq0 0 0	rg <u>B</u> Ţ/Ove	rlock 10 Tf 50
85	Effect of calcium, zinc and magnesium on the attachment and spreading of osteoblast like cells onto ceramic matrices. Journal of Materials Science: Materials in Medicine, 2007, 18, 699-703.	3.6	54
86	Cyclodextrin–insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. International Journal of Pharmaceutics, 2006, 325, 147-154.	5.2	227
87	Interpolymer complex microparticles based on polymethacrylic acid-chitosan for oral insulin delivery. Journal of Applied Polymer Science, 2006, 99, 506-512.	2.6	45
88	Cell mimetic lateral stabilization of outer cell mimetic bilayer on polymer surfaces by peptide bonding and their blood compatibility. Journal of Biomedical Materials Research - Part A, 2006, 79A, 23-35.	4.0	16
89	Cell mimetic monolayer supported chitosan-haemocompatibility studies. Journal of Biomedical Materials Research - Part A, 2006, 79A, 147-152.	4.0	15

90Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide
delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 298-305.3.477

#	Article	IF	CITATIONS
91	Poly Methacrylic Acid-Alginate Semi-IPN Microparticles for Oral Delivery of Insulin: A Preliminary Investigation. Journal of Biomaterials Applications, 2004, 19, 35-45.	2.4	15
92	Supported Cell Mimetic Monolayers and Their Interaction with Blood. Langmuir, 2004, 20, 11115-11122.	3.5	40
93	Ceramic Drug Delivery: A Perspective. Journal of Biomaterials Applications, 2003, 17, 253-264.	2.4	114
94	Oral Insulin – a Perspective. Journal of Biomaterials Applications, 2003, 17, 183-196.	2.4	32
95	Stimuli Sensitive Polymethacrylic Acid Microparticles (PMAA) – Oral Insulin Delivery. Journal of Biomaterials Applications, 2002, 17, 125-134.	2.4	24
96	Delivery of insulin from hydroxyapatite ceramic microspheres: Preliminaryin vivo studies. Journal of Biomedical Materials Research Part B, 2002, 61, 660-662.	3.1	41
97	Blood-Compatible Materials: A Perspective. Journal of Biomaterials Applications, 2001, 15, 359-381.	2.4	28
98	In Vivo Absorption Studies of Insulin from an Oral Delivery System. Drug Delivery, 2001, 8, 19-23.	5.7	38
99	Influence of Steroid Hormones on Bovine Pericardial Calcification. Journal of Biomaterials Applications, 2001, 16, 109-124.	2.4	3
100	Inhibition of Bioprosthesis Calcification Due to Synergistic Effect of Fe/Mg Ions to Polyethylene Glycol Grafted Bovine Pericardium. Journal of Biomaterials Applications, 2001, 16, 93-107.	2.4	9
101	Beta cyclodextrin-insulin-encapsulated chitosan/alginate matrix: Oral delivery system. Journal of Applied Polymer Science, 2000, 75, 1089-1096.	2.6	45
102	Adsorption of human IgG on Cu2+-immobilized cellulose affinity membrane: Preliminary study. , 2000, 50, 110-113.		39
103	Synergistic Effect of Released Aspirin/Heparin for Preventing Bovine Pericardial Calcification. Artificial Organs, 2000, 24, 129-136.	1.9	9
104	The Anticalcification Effect of Polyethylene Glycol – Immobilized on Hexamethylene Diisocyanate Treated Pericardium. Artificial Cells, Blood Substitutes, and Biotechnology, 2000, 28, 79-94.	0.9	9
105	Covalently Bonded Heparin to Alter the Pericardial Calcification. Artificial Cells, Blood Substitutes, and Biotechnology, 2000, 28, 241-253.	0.9	5
106	Lipoinsulin encapsulated alginate-chitosan capsules: intestinal delivery in diabetic rats. Journal of Microencapsulation, 2000, 17, 405-411.	2.8	85
107	Effects of Double Cross-Linking Technique on the Enzymatic Degradation and Calcification of Bovine Pericardia. Journal of Biomaterials Applications, 2000, 14, 273-295.	2.4	4
108	Alginate Encapsulated Bioadhesive Chitosan Microspheres for Intestinal Drug Delivery. Journal of Biomaterials Applications, 1999, 13, 290-296.	2.4	42

#	Article	IF	CITATIONS
109	Development of porous spherical hydroxyapatite granules: application towards protein delivery. Journal of Materials Science: Materials in Medicine, 1999, 10, 383-388.	3.6	179
110	The Antithrombotic versus Calcium Antagonistic Effects of Polyethylene Glycol Grafted Bovine Pericardium. Journal of Biomaterials Applications, 1999, 14, 48-66.	2.4	13
111	Letter to the editor. Journal of Microencapsulation, 1998, 15, 525-526.	2.8	1
112	Comparative Complement Activation Study of Polypropylene Hollow Fibres of Two Different Makes in Static Condition. Journal of Biomaterials Applications, 1998, 12, 300-320.	2.4	3
113	Activated Charcoal Microcapsules and their Applications. Journal of Biomaterials Applications, 1998, 13, 128-157.	2.4	32
114	Acetylsalicylic acid loaded poly(vinyl alcohol) hemodialysis membranes: effect of drug release on blood compatibility and permeability. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 755-764.	3.5	30
115	Influence of Polyethylene Glycol Graftings on the in Vitro Degradation and Calcification of Bovine Pericardium. Journal of Biomaterials Applications, 1997, 11, 430-452.	2.4	12
116	Modified Polyacrylamide Microspheres as Immunosorbent: Trivandrum-695012. India Artificial Cells, Blood Substitutes, and Biotechnology, 1997, 25, 541-550.	0.9	5
117	Infection resistant hydroxyapatite/alginate plastic composite. Journal of Materials Science Letters, 1997, 16, 2050-2051.	0.5	18
118	Development of chitosan/polyethylene vinyl acetate co-matrix: controlled release of aspirin-heparin for preventing cardiovascular thrombosis. Biomaterials, 1997, 18, 375-381.	11.4	78
119	Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. Journal of Biomedical Materials Research Part B, 1997, 34, 21-28.	3.1	634
120	Glutaraldehyde Treated Bovine Pericardium: Changes in Calcification Due to Vitamins and Platelet Inhibitors. Artificial Organs, 1997, 21, 1007-1013.	1.9	7
121	Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. Journal of Microencapsulation, 1996, 13, 319-329.	2.8	163
122	Changes in Polyurethane Calcification Due to Antibiotics. Artificial Organs, 1996, 20, 752-760.	1.9	12
123	Development of Silastic Polyurethane (Angioflex) Materials with Antibacterial Agent. Journal of Biomaterials Applications, 1996, 10, 210-216.	2.4	1
124	Effect of liposome-albumin coatings on ferric ion retention and release from chitosan beads. Biomaterials, 1996, 17, 61-66.	11.4	21
125	Structural studies on bovine bioprosthetic tissues and their in vivo calcification: prevention via drug delivery. Biomaterials, 1996, 17, 577-585.	11.4	17
126	Polyacrylonitrile-reinforced poly(vinyl alcohol) membranes: Mechanical and dialysis performance. Journal of Applied Polymer Science, 1995, 57, 1447-1454.	2.6	24

#	Article	IF	CITATIONS
127	Modified Hydroxyapatite Microspheres as Immunoadsorbent for Plasma Perfusion: Preliminary Study. Journal of Colloid and Interface Science, 1995, 174, 224-229.	9.4	17
128	Antibiotic loaded hydroxyapatite osteoconductive implant material ? in vitro release studies. Journal of Materials Science Letters, 1995, 14, 1792-1794.	0.5	13
129	Sterilization of Chitosan: Implications. Journal of Biomaterials Applications, 1995, 10, 136-143.	2.4	34
130	Development of Artificial Skin (Template) and Influence of Different Types of Sterilization Procedures on Wound Healing Pattern in Rabbits and Guinea Pigs. Journal of Biomaterials Applications, 1995, 10, 144-162.	2.4	18
131	Heparin Immobilized Chitosan - Poly Ethylene Glycol Interpenetrating Network: Antithrombogenicity. Artificial Cells, Blood Substitutes, and Biotechnology, 1995, 23, 175-192.	0.9	23
132	Inhibition ofin vitro calcium phosphate precipitation in presence of polyurethane via surface modification and drug delivery. Journal of Applied Biomaterials: an Official Journal of the Society for Biomaterials, 1994, 5, 245-254.	1.2	27
133	Anesthetic and ferric-magnesium ion combinations as calcium antagonists for glutaraldehyde-treated pericardial tissues. Clinical Materials, 1994, 17, 165-172.	0.5	8
134	Polyetherurethaneurea reinforced poly(vinyl alcohol) dialysis membranes: studies on permeability and mechanical strength. Bulletin of Materials Science, 1994, 17, 1065-1070.	1.7	5
135	Biomaterials: Role of surface modifications. Bulletin of Materials Science, 1994, 17, 1317-1329.	1.7	10
136	Chitosan matrix for oral sustained delivery of ampicillin. Biomaterials, 1993, 14, 939-944.	11.4	145
137	Preparation and performance of chitosan encapsulated activated charcoal (ACCB) adsorbents for small molecules. Journal of Microencapsulation, 1993, 10, 475-486.	2.8	18
138	Chitosan beads and granules for oral sustained delivery of nifedipine: in vitro studies. Biomaterials, 1992, 13, 949-952.	11.4	99
139	Prostaglandin E1-immobilized poly(vinyl alcohol)-blended chitosan membranes: Blood compatibility and permeability properties. Journal of Applied Polymer Science, 1992, 44, 2145-2156.	2.6	94
140	Glucose-responsive insulin release from poly(vinyl alcohol)-blended polyacrylamide membranes containing glucose oxidase. Journal of Applied Polymer Science, 1992, 46, 1159-1167.	2.6	16
141	Protein interaction with tantalum: Changes with oxide layer and hydroxyapatite at the interface. Journal of Biomedical Materials Research Part B, 1992, 26, 1179-1184.	3.1	33
142	Polylysineâ€Immobilized Chitosan Beads as Adsorbents for Bilirubin. Artificial Organs, 1992, 16, 568-576.	1.9	65
143	Antithrombotic activity of an unsaturated fatty acid preparation-comments. Thrombosis Research, 1991, 62, 353-354.	1.7	0
144	Effect of plasma glow, glutaraldehyde and carbodiimide treatments on the enzymic degradation of poly(L-lactic acid) and poly(γ-benzyl-L-glutamate) films. Biomaterials, 1991, 12, 677-682.	11.4	18

#	Article	IF	CITATIONS
145	Effects of lipoproteins on protein/platelet interaction on polymers. Journal of Biomedical Materials Research Part B, 1991, 25, 1085-1094.	3.1	8
146	Polyelektrolytmembranen aus Chitosan. Acta Polymerica, 1990, 41, 198-199.	0.9	0
147	Fibrinogen-aluminium interaction: Changes with oxide layer thickness onto metal surface. Journal of Biomedical Materials Research Part B, 1990, 24, 455-462.	3.1	20
148	Surface modification of polyurethane films by liposome-encapsulated heparin. Journal of Colloid and Interface Science, 1990, 137, 289-291.	9.4	4
149	Albumin adsorption on to aluminium oxide and polyurethane surfaces. Biomaterials, 1990, 11, 255-257.	11.4	16
150	Influence of steroid hormones on protein-platelet interaction at the blood-polymer interface. Biomaterials, 1989, 10, 609-616.	11.4	10
151	Bioactive molecules immobilized to liposome modified albumin-blended chitosan membranes—Antithrombotic and permeability properties. Journal of Colloid and Interface Science, 1989, 130, 331-340.	9.4	30
152	The Effect of Antihypertensive Drugs on Protein Adsorption, Platelet Adhesion, and Blood Coagulation Toward an Artificial Surface. Artificial Organs, 1989, 13, 219-228.	1.9	10
153	The Preparation of a Urokinaseâ€ATâ€₦Iâ€PGE ₁ â€Methyldopa Complex, and Its Effects on Platelet Adhesion, Coagulation Times, Protein Adsorption, and Fibrinolysis. Artificial Organs, 1989, 13, 229-237.	1.9	6
154	Changes in Albumin/Platelet Interaction with an Artificial Surface—Due to Antibiotics, Pyridoxal Phosphate, and Lymphocytes. Artificial Organs, 1988, 12, 143-151.	1.9	18
155	Prostacyclin immobilized albuminated surfaces. Journal of Biomedical Materials Research Part B, 1987, 21, 937-945.	3.1	13
156	Platelet adhesion to surfaces treated with glow discharge and albumin. Journal of Biomedical Materials Research Part B, 1986, 20, 677-682.	3.1	19
157	Radiation-induced modification of polyurethane with hydroxyethyl methacrylate: blood compatibility. Bulletin of Materials Science, 1985, 7, 71-73.	1.7	2
158	Fig tree sap: antithrombogenicity on nylon surfaces. Bulletin of Materials Science, 1985, 7, 75-77.	1.7	3
159	Trypsinated (immobilized) nylon surfaces: antithrombogenicity. Bulletin of Materials Science, 1985, 7, 79-81.	1.7	0
160	Surface modification of polyvinyl chloride towards blood compatibility. Bulletin of Materials Science, 1984, 6, 1087-1091.	1.7	3
161	Glutaraldehyde proteinated surfaces: blood compatibility. Bulletin of Materials Science, 1983, 5, 103-109.	1.7	1
162	Lipid adsorption/absorption on polycarbonate surfaces — an understanding. Bulletin of Materials Science, 1983, 5, 127-131.	1.7	3

#	Article	IF	CITATIONS
163	Possible contributions of surface energy and interfacial parameters of synthetic polymers to blood compatibility. Biomaterials, 1981, 2, 57-59.	11.4	30