
Hannah Jean Lundberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction of surface topography and taper mismatch on headâ€stem modular junction contact mechanics during assembly in modern total hip replacement. Journal of Orthopaedic Research, 2023, 41, 418-425.	1.2	6
2	Optimal surgical component alignment minimizes TKR wear – An in silico study with nine alignment parameters. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104939.	1.5	2
3	Model validation for estimating taper microgroove deformation during total hip arthroplasty head-neck assembly. Journal of Biomechanics, 2022, 140, 111172.	0.9	5
4	Intelligence-Based Spine Care Model: A New Era of Research and Clinical Decision-Making. Global Spine Journal, 2021, 11, 135-145.	1.2	24
5	Are Damage Modes Related to Microstructure and Material Loss in Severely Damaged CoCrMo Femoral Heads?. Clinical Orthopaedics and Related Research, 2021, 479, 2083-2096.	0.7	13
6	Fretting-corrosion in hip taper modular junctions: The influence of topography and pH levels – An in-vitro study. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104443.	1.5	13
7	Sensitivity of total knee replacement wear to variability in motion and load input: A parametric finite element analysis study. Journal of Orthopaedic Research, 2020, 38, 1538-1549.	1.2	5
8	Can a gait-dependent model predict wear on retrieved total knee arthroplasty components?. Bone and Joint Journal, 2020, 102-B, 129-137.	1.9	3
9	Modelling changes in modular taper micromechanics due to surgeon assembly technique in total hip arthroplasty. Bone and Joint Journal, 2020, 102-B, 33-40.	1.9	12
10	Contact conditions for total hip head-neck modular taper junctions with microgrooved stem tapers. Journal of Biomechanics, 2020, 103, 109689.	0.9	20
11	Computational Parametric Studies for Preclinical Evaluation of Total Knee Replacements. Lecture Notes in Computational Vision and Biomechanics, 2020, , 60-85.	0.5	3
12	The choice of the femoral center of rotation affects material loss in total knee replacement wear testing – A parametric finite element study of ISO 14243-3. Journal of Biomechanics, 2019, 88, 104-112.	0.9	13
13	Finite element evaluation of the newest ISO testing standard for polyethylene total knee replacement liners. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 545-552.	1.0	17
14	What Factors Drive Taper Corrosion?. Journal of Arthroplasty, 2018, 33, 2707-2711.	1.5	49
15	Mechanical, chemical and biological damage modes within headâ€neck tapers of CoCrMo and Ti6Al4V contemporary hip replacements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1672-1685.	1.6	68
16	Imprinting and Column Damage on CoCrMo Head Taper Surfaces in Total Hip Replacements. , 2018, , 131-155.		5
17	Linear Penetration as a Surrogate Measure for Volumetric Wear in TKR Tibial Inserts. , 2018, , 75-92.		1
18	Are Instrumented Knee Forces Representative of a Larger Population of Cruciate-Retaining Total Knee Arthroplasties?. Journal of Arthroplasty, 2017, 32, 2268-2273.	1.5	6

0

#	Article	IF	CITATIONS
19	Hamstring Activity in the Anterior Cruciate Ligament Injured Patient: Injury Implications and Comparison With Quadriceps Activity. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2016, 32, 1651-1659.	1.3	12
20	A reduction in the knee adduction moment with medial thrust gait is associated with a medial shift in center of plantar pressure. Medical Engineering and Physics, 2016, 38, 615-621.	0.8	17
21	Does Surface Topography Play a Role in Taper Damage in Head-neck Modular Junctions?. Clinical Orthopaedics and Related Research, 2016, 474, 2232-2242.	0.7	49
22	Comparison of Antagonist Muscle Activity During Walking Between Total Knee Replacement and Control Subjects Using Unnormalized Electromyography. Journal of Arthroplasty, 2016, 31, 1331-1339.	1.5	15
23	Contact Mechanics and Plastic Deformation at the Local Surface Topography Level After Assembly of Modular Head-Neck Junctions in Modern Total Hip Replacement Devices. , 2015, , 59-82.		11
24	Tribocorrosion and oral and maxillofacial surgical devices. British Journal of Oral and Maxillofacial Surgery, 2014, 52, 396-400.	0.4	34
25	Methods for locating the tibio-femoral contact pathway in total knee replacements using marker-based gait analysis and standard radiography. Iowa orthopaedic journal, The, 2014, 34, 94-101.	0.5	5
26	Computational Framework for Determining Patient-Specific Total Knee Arthroplasty Loading. Journal of Medical Devices, Transactions of the ASME, 2013, 7, 0409041-409041.	0.4	0
27	Fine Tuning Total Knee Replacement Contact Force Prediction Algorithms Using Blinded Model Validation. Journal of Biomechanical Engineering, 2013, 135, 021015.	0.6	19
28	Computational Framework for Determining Patient-Specific Total Knee Arthroplasty Loading. , 2013, , .		0
29	Comparison of ISO Standard and TKR patient axial force profiles during the stance phase of gait. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2012, 226, 227-234.	1.0	12
30	Grand Challenge Competition: A Parametric Numerical Model to Predict In Vivo Medial and Lateral Knee Forces in Walking Gaits. , 2012, , .		5
31	Calculated Axial Forces at the Knee in Total Knee Replacement Patients During Chair and Stair Activities. , 2012, , .		0
32	Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns. Journal of Biomechanics, 2012, 45, 990-996.	0.9	36
33	The Effect of the Tibiofemoral Contact Path Centroid Location on TKR Contact Forces. , 2010, , .		1
34	A parametric approach to numerical modeling of TKR contact forces. Journal of Biomechanics, 2009, 42, 541-545.	0.9	22
35	Comparison of Numerically Modeled Knee Joint Contact Forces to Instrumented Total Knee Prosthesis Forces. , 2009, , .		1

A Novel Multilayered Annular Model to Predict Delamination in a Lumbar Intervertebral Disc. , 2009, , .

HANNAH JEAN LUNDBERG

#	Article	IF	CITATIONS
37	Effects of episodic subluxation events on third body ingress and embedment in the THA bearing surface. Journal of Biomechanics, 2008, 41, 2090-2096.	0.9	19
38	Biomechanical Effect of Macroscopic Degeneration in a Lumbar Intervertebral Disc. , 2008, , .		0
39	Nonidentical and outlier duty cycles as factors accelerating UHMWPE wear in THA: A finite element exploration. Journal of Orthopaedic Research, 2007, 25, 30-43.	1.2	9
40	Effects of implant design parameters on fluid convection, potentiating third-body debris ingress into the bearing surface during THA impingement/subluxation. Journal of Biomechanics, 2007, 40, 1676-1685.	0.9	18
41	Habitual hip joint activity level of the penned EMU (Dromaius novaehollandie). Iowa orthopaedic journal, The, 2007, 27, 17-23.	0.5	9
42	Problematic sites of third body embedment in polyethylene for total hip wear acceleration. Journal of Biomechanics, 2006, 39, 1208-1216.	0.9	14
43	Cartilage Thickness in Cadaveric Ankles: Measurement with Double-Contrast Multi–Detector Row CT Arthrography versus MR Imaging. Radiology, 2004, 233, 768-773.	3.6	99