Dapeng Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737075/publications.pdf

Version: 2024-02-01

306 papers 23,292 citations

9264 74 h-index 9861 141 g-index

314 all docs

314 does citations

314 times ranked 23572 citing authors

#	Article	IF	CITATIONS
1	Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angewandte Chemie - International Edition, 2009, 48, 9457-9460.	13.8	1,272
2	A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis, 2018, 1, 339-348.	34.4	1,214
3	ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 442-450.	30.8	719
4	Recent Progress in MOFâ€Derived, Heteroatomâ€Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Advanced Functional Materials, 2018, 28, 1704537.	14.9	552
5	Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. Journal of Materials Chemistry, 2012, 22, 8911.	6.7	517
6	Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6626-6631.	7.1	500
7	Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Nonâ€precious Metals. Angewandte Chemie - International Edition, 2014, 53, 2433-2437.	13.8	417
8	A facile and versatile method for preparation of colored TiO ₂ with enhanced solar-driven photocatalytic activity. Nanoscale, 2014, 6, 10216-10223.	5.6	382
9	Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer, 2017, 125, 50-57.	3.8	379
10	Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. Journal of Materials Chemistry C, 2019, 7, 2725-2733.	5.5	342
11	Porous covalent–organic materials: synthesis, clean energy application and design. Journal of Materials Chemistry A, 2013, 1, 2691-2718.	10.3	329
12	An amino group functionalized metal–organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. Journal of Materials Chemistry A, 2014, 2, 7662.	10.3	312
13	Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy, 2018, 50, 691-698.	16.0	303
14	Nanoparticle Dispersion and Aggregation in Polymer Nanocomposites: Insights from Molecular Dynamics Simulation. Langmuir, 2011, 27, 7926-7933.	3.5	295
15	Nitrogenâ€Doped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction. Advanced Materials, 2014, 26, 3315-3320.	21.0	292
16	MXenes for polymer matrix electromagnetic interference shielding composites: A review. Composites Communications, 2021, 24, 100653.	6.3	291
17	Vertical CoP Nanoarray Wrapped by N,Pâ€Doped Carbon for Hydrogen Evolution Reaction in Both Acidic and Alkaline Conditions. Advanced Energy Materials, 2019, 9, 1803970.	19.5	284
18	Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Separation and Purification Technology, 2018, 194, 462-469.	7.9	277

#	Article	IF	CITATIONS
19	Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon, 2015, 85, 51-59.	10.3	275
20	Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. Journal of Materials Chemistry, 2011, 21, 6649.	6.7	255
21	Metal–Organic Frameworks with Incorporated Carbon Nanotubes: Improving Carbon Dioxide and Methane Storage Capacities by Lithium Doping. Angewandte Chemie - International Edition, 2011, 50, 491-494.	13.8	255
22	Lithiumâ€Doped 3D Covalent Organic Frameworks: Highâ€Capacity Hydrogen Storage Materials. Angewandte Chemie - International Edition, 2009, 48, 4730-4733.	13.8	244
23	Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy and Environmental Science, 2012, 5, 8370.	30.8	234
24	Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy, 2018, 49, 634-643.	16.0	220
25	Synthesis of Luminescent Covalent–Organic Polymers for Detecting Nitroaromatic Explosives and Small Organic Molecules. Macromolecular Rapid Communications, 2012, 33, 1184-1190.	3.9	213
26	Polymerâ€based EMI shielding composites with 3D conductive networks: A miniâ€review. SusMat, 2021, 1, 413-431.	14.9	212
27	Doping of Alkali, Alkaline-Earth, and Transition Metals in Covalent-Organic Frameworks for Enhancing CO ₂ Capture by First-Principles Calculations and Molecular Simulations. ACS Nano, 2010, 4, 4225-4237.	14.6	206
28	Singleâ€Atom Ru Doping Induced Phase Transition of MoS ₂ and S Vacancy for Hydrogen Evolution Reaction. Small Methods, 2019, 3, 1900653.	8.6	206
29	Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21431-21439.	8.0	205
30	Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. Journal of the American Chemical Society, 2015, 137, 13301-13307.	13.7	202
31	Molecular Dynamics Study on Nanoparticle Diffusion in Polymer Melts:  A Test of the Stokesâ^'Einstein Law. Journal of Physical Chemistry C, 2008, 112, 6653-6661.	3.1	195
32	Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polymer Chemistry, 2015, 6, 1896-1911.	3.9	189
33	Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 12, 277-283.	18.0	176
34	ZIF-derived porous carbon: a promising supercapacitor electrode material. Journal of Materials Chemistry A, 2014, 2, 12873.	10.3	171
35	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie - International Edition, 2016, 55, 15027-15030.	13.8	166
36	Optimization of Single-Walled Carbon Nanotube Arrays for Methane Storage at Room Temperature. Journal of Physical Chemistry B, 2003, 107, 13286-13292.	2.6	155

#	Article	IF	CITATIONS
37	Amino-Functionalized Luminescent Metal–Organic Framework Test Paper for Rapid and Selective Sensing of SO ₂ Gas and Its Derivatives by Luminescence Turn-On Effect. Analytical Chemistry, 2018, 90, 3608-3614.	6.5	146
38	CNT@Cu ₃ (BTC) ₂ and Metalâ€"Organic Frameworks for Separation of CO ₂ /CH ₄ Mixture. Journal of Physical Chemistry C, 2011, 115, 19864-19871.	3.1	144
39	Covalent-organic polymers for carbon dioxide capture. Journal of Materials Chemistry, 2012, 22, 22663.	6.7	143
40	ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater. Chemical Engineering Journal, 2017, 323, 502-511.	12.7	140
41	Porous organic polymers as a platform for sensing applications. Chemical Society Reviews, 2022, 51, 2031-2080.	38.1	140
42	Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energy and Environmental Science, 2010, 3, 1469.	30.8	138
43	Improved Classical United-Atom Force Field for Imidazolium-Based Ionic Liquids: Tetrafluoroborate, Hexafluorophosphate, Methylsulfate, Trifluoromethylsulfonate, Acetate, Trifluoroacetate, and Bis(trifluoromethylsulfonyl)amide. Journal of Physical Chemistry B, 2011, 115, 10027-10040.	2.6	138
44	Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 3926-3932.	10.3	136
45	Highly sensitive and selective detection of 2,4,6-trinitrophenol using covalent-organic polymer luminescent probes. Journal of Materials Chemistry A, 2015, 3, 92-96.	10.3	132
46	Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale, 2019, 11, 22590-22598.	5 . 6	130
47	Molecular Sizes and Antibacterial Performance Relationships of Flexible Ionic Liquid Derivatives. Journal of the American Chemical Society, 2020, 142, 20257-20269.	13.7	128
48	One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. Carbon, 2016, 109, 640-649.	10.3	125
49	Metal-organic framework as luminescence turn-on sensor for selective detection of metal ions: Absorbance caused enhancement mechanism. Sensors and Actuators B: Chemical, 2018, 256, 839-845.	7.8	116
50	Adsorption and Diffusion of Shale Gas Reservoirs in Modeled Clay Minerals at Different Geological Depths. Energy & Depths. En	5.1	113
51	Silicon Nanotube as a Promising Candidate for Hydrogen Storage:  From the First Principle Calculations to Grand Canonical Monte Carlo Simulations. Journal of Physical Chemistry C, 2008, 112, 5598-5604.	3.1	104
52	Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. Journal of Materials Chemistry C, 2015, 3, 8490-8494.	5 . 5	103
53	Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn–Air batteries. Carbon, 2019, 144, 8-14.	10.3	101
54	High Uptakes of Methane in Li-Doped 3D Covalent Organic Frameworks. Langmuir, 2010, 26, 220-226.	3.5	99

#	Article	IF	Citations
55	High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-like Structure. Journal of Physical Chemistry Letters, 2010, 1, 978-981.	4.6	98
56	Polymer–nanoparticle interfacial behavior revisited: A molecular dynamics study. Physical Chemistry Chemical Physics, 2011, 13, 13058.	2.8	96
57	Adsorption of CO ₂ , CH ₄ , CO ₂ /N ₂ and CO ₂ /CH ₄ in novel activated carbon beads: Preparation, measurements and simulation. AICHE Journal, 2011, 57, 3042-3051.	3.6	96
58	Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment. Materials Research Bulletin, 2004, 39, 185-194.	5.2	95
59	Postsynthetic Lithium Modification of Covalent-Organic Polymers for Enhancing Hydrogen and Carbon Dioxide Storage. Journal of Physical Chemistry C, 2012, 116, 5974-5980.	3.1	95
60	Covalent organic polymer supported palladium catalysts for CO oxidation. Chemical Communications, 2013, 49, 5633.	4.1	95
61	Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Physical Chemistry Chemical Physics, 2011, 13, 518-529.	2.8	94
62	Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing. Sensors and Actuators B: Chemical, 2011, 159, 171-177.	7.8	87
63	Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale, 2015, 7, 2758-2769.	5.6	86
64	A Novel Zrâ€MOF as Fluorescence Turnâ€On Probe for Realâ€Time Detecting H ₂ S Gas and Fingerprint Identification. Small, 2018, 14, e1703822.	10.0	86
65	Local Structure Evolution and its Connection to Thermodynamic and Transport Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and Water Mixtures by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 3249-3263.	2.6	85
66	Molecular simulation of displacement of shale gas by carbon dioxide at different geological depths. Chemical Engineering Science, 2016, 156, 121-127.	3.8	85
67	Nitrogen and Fluorine-Codoped Porous Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32859-32867.	8.0	83
68	Facile preparation of high-capacity hydrogen storage metal-organic frameworks: A combination of microwave-assisted solvothermal synthesis and supercritical activation. Chemical Engineering Science, 2010, 65, 3140-3146.	3.8	81
69	Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform: Functional group effects. Sensors and Actuators B: Chemical, 2016, 226, 273-278.	7.8	80
70	A Three-Dimensional sp ² Carbon-Conjugated Covalent Organic Framework. Journal of the American Chemical Society, 2021, 143, 15562-15566.	13.7	80
71	Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks. Journal of Materials Chemistry, 2011, 21, 11259.	6.7	79
72	Active Site Identification and Evaluation Criteria of In Situ Grown CoTe and NiTe Nanoarrays for Hydrogen Evolution and Oxygen Evolution Reactions. Small Methods, 2019, 3, 1900113.	8.6	78

#	Article	IF	CITATIONS
73	Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas. AICHE Journal, 2013, 59, 2928-2942.	3.6	77
74	Density functional theory for semiflexible and cyclic polyatomic fluids. Journal of Chemical Physics, 2004, 121, 4210-4220.	3.0	76
75	Flameâ€Retardant Polypropylene/Multiwall Carbon Nanotube Nanocomposites: Effects of Surface Functionalization and Surfactant Molecular Weight. Macromolecular Chemistry and Physics, 2014, 215, 327-340.	2.2	75
76	Hydrogen Adsorption Storage on Single-Walled Carbon Nanotube Arrays by a Combination of Classical Potential and Density Functional Theory. Journal of Physical Chemistry B, 2003, 107, 4942-4950.	2.6	73
77	Self-Diffusion of Methane in Single-Walled Carbon Nanotubes at Sub- and Supercritical Conditions. Langmuir, 2004, 20, 3759-3765.	3.5	73
78	Functional Group Modification of Metal–Organic Frameworks for CO ₂ Capture. Journal of Physical Chemistry C, 2012, 116, 10573-10579.	3.1	73
79	Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Advanced Composites and Hybrid Materials, 2018, 1, 127-134.	21.1	73
80	Phosphorous–Nitrogenâ€Codoped Carbon Materials Derived from Metal–Organic Frameworks as Efficient Electrocatalysts for Oxygen Reduction Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 2100-2105.	2.0	70
81	Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Advanced Composites and Hybrid Materials, 2021, 4, 543-551.	21.1	69
82	Design of the Alkali-Metal-Doped WO ₃ as a Near-Infrared Shielding Material for Smart Window. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 17981-17988.	3.7	68
83	Understanding the Mechanism of Photocatalysis Enhancements in the Graphene-like Semiconductor Sheet/TiO2 Composites. Journal of Physical Chemistry C, 2014, 118, 5954-5960.	3.1	65
84	Lithium doping on metal-organic frameworks for enhancing H2 Storage. International Journal of Hydrogen Energy, 2012, 37, 946-950.	7.1	64
85	Molecular Dynamics Simulation of Diffusion of Shale Oils in Montmorillonite. Journal of Physical Chemistry C, 2016, 120, 8986-8991.	3.1	64
86	Facile preparation of biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 8611-8622.	7.1	64
87	Timeâ^'Temperature and Timeâ^'Concentration Superposition of Nanofilled Elastomers: A Molecular Dynamics Study. Macromolecules, 2009, 42, 2831-2842.	4.8	63
88	Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide. Carbon, 2005, 43, 1364-1370.	10.3	62
89	Carbon Dioxide Capture by PAFs and an Efficient Strategy To Fast Screen Porous Materials for Gas Separation. Journal of Physical Chemistry C, 2013, 117, 8353-8364.	3.1	62
90	Kinetic Charging Inversion in Ionic Liquid Electric Double Layers. Journal of Physical Chemistry Letters, 2014, 5, 2195-2200.	4.6	62

#	Article	IF	Citations
91	Hydrogen Production via Efficient Formic Acid Decomposition: Engineering the Surface Structure of Pd-Based Alloy Catalysts by Design. ACS Catalysis, 2019, 9, 781-790.	11.2	62
92	Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/ polyaniline composites as high performance supercapacitor materials. Engineered Science, 2018, , .	2.3	62
93	Density-functional theory and Monte Carlo simulation for the surface structure and correlation functions of freely jointed Lennard-Jones polymeric fluids. Journal of Chemical Physics, 2005, 122, 174708.	3.0	61
94	Surface Forces between Telechelic Brushes Revisited:Â The Origin of a Weak Attraction. Langmuir, 2006, 22, 2712-2718.	3.5	60
95	Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Physical Chemistry Chemical Physics, 2009, 11, 11365.	2.8	60
96	Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon, 2017, 115, 503-514.	10.3	60
97	Improving Energy Conversion Efficiency of Dye-Sensitized Solar Cells by Modifying TiO ₂ Photoanodes with Nitrogen-Reduced Graphene Oxide. ACS Sustainable Chemistry and Engineering, 2014, 2, 1234-1240.	6.7	59
98	A Fully Conjugated 3D Covalent Organic Framework Exhibiting Bandâ€like Transport with Ultrahigh Electron Mobility. Angewandte Chemie - International Edition, 2021, 60, 9321-9325.	13.8	59
99	Microstructure of Block Copolymers near Selective Surfaces:  Theoretical Predictions and Configurational-Bias Monte Carlo Simulation. Macromolecules, 2005, 38, 971-978.	4.8	58
100	Two-dimensional graphitic C ₃ N ₅ materials: promising metal-free catalysts and CO ₂ adsorbents. Journal of Materials Chemistry A, 2018, 6, 7168-7174.	10.3	58
101	Capture of Trace Sulfur Gases from Binary Mixtures by Single-Walled Carbon Nanotube Arrays: A Molecular Simulation Study. Environmental Science & Eamp; Technology, 2011, 45, 4832-4838.	10.0	57
102	Effect of Li Doping on Diffusion and Separation of Hydrogen and Methane in Covalent Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 12591-12598.	3.1	57
103	Highly selective detection of picric acid from multicomponent mixtures of nitro explosives by using COP luminescent probe. Sensors and Actuators B: Chemical, 2017, 243, 753-760.	7.8	56
104	Nitrogen-doped graphene as an excellent candidate for selective gas sensing. Science China Chemistry, 2014, 57, 911-917.	8.2	55
105	Regioselective Functionalization of Stable BNâ€Modified Luminescent Tetraphenes for Highâ€Resolution Fingerprint Imaging. Angewandte Chemie - International Edition, 2019, 58, 10132-10137.	13.8	55
106	Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 2010, 48, 3760-3768.	10.3	54
107	Revisiting the Dispersion Mechanism of Grafted Nanoparticles in Polymer Matrix: A Detailed Molecular Dynamics Simulation. Langmuir, 2011, 27, 15213-15222.	3.5	54
108	Determination of pore size distribution and adsorption of methane and CCl4 on activated carbon by molecular simulation. Carbon, 2002, 40, 2359-2365.	10.3	52

#	Article	IF	Citations
109	Hydrogen Storage in Mesoporous Coordination Frameworks: Experiment and Molecular Simulation. Journal of Physical Chemistry C, 2009, 113, 15106-15109.	3.1	52
110	Synthesis of Cu@Pd core-shell nanowires with enhanced activity and stability for formic acid oxidation. Electrochimica Acta, 2014, 143, 44-48.	5.2	52
111	Probing the Structural Transition Kinetics and Charge Compensation of the P2-Na _{0.78} Al _{0.05} Ni _{0.33} Mn _{0.60} O ₂ Cathode for Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24122-24131.	8.0	51
112	Oriented construction Cu3P and Ni2P heterojunction to boost overall water splitting. Chemical Engineering Journal, 2022, 448, 137706.	12.7	51
113	Revisiting density functionals for the primitive model of electric double layers. Journal of Chemical Physics, 2014, 140, 044714.	3.0	50
114	Li-Doped and Nondoped Covalent Organic Borosilicate Framework for Hydrogen Storage. Journal of Physical Chemistry C, 2010, 114, 3108-3114.	3.1	49
115	Absorption competition quenching mechanism of porous covalent organic polymer as luminescent sensor for selective sensing Fe ³⁺ . ChemistrySelect, 2017, 2, 1041-1047.	1.5	49
116	Toughening of polypropylene-ethylene copolymer with nanosized CaCO3 and styrene-butadiene-styrene. Journal of Applied Polymer Science, 2004, 94, 796-802.	2.6	47
117	Molecular Simulation of Novel Carbonaceous Materials for Hydrogen Storage. Nano Letters, 2004, 4, 1489-1492.	9.1	47
118	The Role of Shape Complementarity in the Protein-Protein Interactions. Scientific Reports, 2013, 3, 3271.	3.3	47
119	Nitrogen-doped porous carbons with ultrahigh specific surface area as bifunctional materials for dye removal of wastewater and supercapacitors. Applied Surface Science, 2018, 456, 184-194.	6.1	47
120	Polyaniline-coated Ru/Ni(OH)2 nanosheets for hydrogen evolution reaction over a wide pH range. Journal of Catalysis, 2019, 375, 249-256.	6.2	47
121	Unlocking the potential of P3 structure for practical Sodium-ion batteries by fabricating zero strain framework for Na+ intercalation. Energy Storage Materials, 2021, 37, 354-362.	18.0	47
122	Ultra-small Ru nanoparticles embedded on Fe–Ni(OH) ₂ nanosheets for efficient water splitting at a large current density with long-term stability of 680 hours. Journal of Materials Chemistry A, 2022, 10, 4817-4824.	10.3	46
123	Li12Si60H60 Fullerene Composite: A Promising Hydrogen Storage Medium. ACS Nano, 2009, 3, 3294-3300.	14.6	45
124	Time-dependent density functional theory for ion diffusion in electrochemical systems. Journal of Physics Condensed Matter, 2014, 26, 284102.	1.8	45
125	Effect of Tail Architecture on Self-Assembly of Amphiphiles for Polymeric Micelles. Langmuir, 2009, 25, 2749-2756.	3.5	44
126	Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5. Chemical Engineering Science, 2011, 66, 2266-2276.	3.8	44

#	Article	IF	Citations
127	Screening donor groups of organic dyes for dye-sensitized solar cells. RSC Advances, 2015, 5, 22892-22898.	3.6	44
128	Porous organic polymer nanotubes as luminescent probe for highly selective and sensitive detection of Fe3+. Science China Chemistry, 2017, 60, 1090-1097.	8.2	44
129	Dual active site tandem catalysis of metal hydroxyl oxides and single atoms for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 297, 120451.	20.2	44
130	Designing a Thermo-switchable Channel for Nanofluidic Controllable Transportation. ACS Nano, 2011, 5, 1102-1108.	14.6	43
131	SiH/TiO2 and GeH/TiO2 Heterojunctions: Promising TiO2-based Photocatalysts under Visible Light. Scientific Reports, 2014, 4, 4810.	3.3	43
132	Atomically dispersed Fe-Cu dual-site catalysts synergistically boosting oxygen reduction for hydrogen fuel cells. Chemical Engineering Journal, 2022, 446, 137112.	12.7	43
133	Density functional theory for adsorption of colloids on the polymer-tethered surfaces: Effect of polymer chain architecture. Journal of Chemical Physics, 2009, 130, 164901.	3.0	42
134	Layering, condensation, and evaporation of short chains in narrow slit pores. Journal of Chemical Physics, 2005, 122, 224701.	3.0	41
135	Selective adsorption of olefin–paraffin on diamond-like frameworks: diamondyne and PAF-302. Journal of Materials Chemistry A, 2013, 1, 9433.	10.3	41
136	Adsorption of carbon dioxide of 1-site and 3-site models in pillared clays: A Gibbs ensemble Monte Carlo simulation. Journal of Colloid and Interface Science, 2007, 310, 391-401.	9.4	40
137	Grand Canonical Monte Carlo Simulation for Determination of Optimum Parameters for Adsorption of Supercritical Methane in Pillared Layered Pores. Journal of Colloid and Interface Science, 2002, 254, 1-7.	9.4	39
138	A hybrid method for predicting the microstructure of polymers with complex architecture: Combination of single-chain simulation with density functional theory. Journal of Chemical Physics, 2006, 124, 164904.	3.0	39
139	Conformation of a Spherical Polyelectrolyte Brush in the Presence of Oppositely Charged Linear Polyelectrolytes. Macromolecules, 2008, 41, 5477-5484.	4.8	39
140	Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites. Polymer, 2014, 55, 1273-1281.	3.8	39
141	Adsorption and selectivity of CH 4 \mid CO 2 in functional group rich organic shales. Journal of Natural Gas Science and Engineering, 2017, 39, 82-89.	4.4	39
142	Surface segregation of Ag–Cu–Au trimetallic clusters. Nanotechnology, 2007, 18, 475702.	2.6	38
143	Existence of a Glassy Layer in the Polymerâ€ <scp>N</scp> anosheet Interface: Evidence from Molecular Dynamics. Macromolecular Theory and Simulations, 2014, 23, 36-48.	1.4	38
144	Heterogeneity Characterization of Ordered Mesoporous Carbon Adsorbent CMK-1 for Methane and Hydrogen Storage: GCMC Simulation and Comparison with Experiment. Journal of Physical Chemistry C, 2008, 112, 13024-13036.	3.1	37

#	Article	IF	CITATIONS
145	Diffusion and Separation of H ₂ , CH ₄ , CO ₂ , and N ₂ in Diamond-Like Frameworks. Journal of Physical Chemistry C, 2015, 119, 6324-6330.	3.1	37
146	Synthesis of thermosensitive micelles based on poly(N-isopropylacrylamide) and poly(I-alanine) for controlled release of adriamycin. Chemical Engineering Journal, 2010, 159, 257-263.	12.7	36
147	Rational Design of Dithienopicenocarbazole-Based Dyes and a Prediction of Their Energy-Conversion Efficiency Characteristics for Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2018, 1, 1435-1444.	5.1	36
148	Adsorption of sodium salt of poly(acrylic) acid (PAANa) on nano-sized CaCO3 and dispersion of nano-sized CaCO3 in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 232, 163-168.	4.7	35
149	Luminescent porous organic polymer nanotubes for highly selective sensing of H ₂ S. Materials Chemistry Frontiers, 2017, 1, 2643-2650.	5.9	35
150	Novel Chemical Sensor for CO and NO: Silicon Nanotube. Journal of Physical Chemistry C, 2011, 115, 12015-12022.	3.1	34
151	A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane. Soft Matter, 2014, 10, 6844.	2.7	34
152	Monte Carlo data of dilute solutions of large spheres in binary hard sphere mixtures. Molecular Physics, 2000, 98, 619-624.	1.7	33
153	Structural transition and melting of onion-ring Pd–Pt bimetallic clusters. Chemical Physics Letters, 2008, 461, 71-76.	2.6	33
154	Density functional theory for predicting polymeric forces against surface fouling. Soft Matter, 2010, 6, 4631.	2.7	33
155	Understanding Photoelectrochemical Properties of B–N Codoped Anatase TiO ₂ for Solar Energy Conversion. Journal of Physical Chemistry C, 2013, 117, 15911-15917.	3.1	33
156	Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation. Physical Chemistry Chemical Physics, 2014, 16, 16039.	2.8	33
157	ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation. Scientific Reports, 2016, 6, 21295.	3.3	33
158	Sulfur, Nitrogen and Fluorine Tripleâ€Doped Metalâ€Free Carbon Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 741-747.	3.4	33
159	COMPUTATIONAL SIMULATION OF ELASTOMER NANOCOMPOSITES: CURRENT PROGRESS AND FUTURE CHALLENGES. Rubber Chemistry and Technology, 2012, 85, 450-481.	1.2	32
160	A porous diamond carbon framework: a new carbon allotrope with extremely high gas adsorption and mechanical properties. Journal of Materials Chemistry A, 2013, 1, 3851.	10.3	32
161	Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1909889.	14.9	32
162	Surface-induced phase transitions in ultrathin films of block copolymers. Journal of Chemical Physics, 2005, 122, 194703.	3.0	31

#	Article	IF	CITATIONS
163	Computational Study on Purification of CO ₂ from Natural Gas by C ₆₀ Intercalated Graphite. Industrial & Engineering Chemistry Research, 2010, 49, 8787-8796.	3.7	31
164	AgNPs@Fe-N-C oxygen reduction catalysts for anion exchange membrane fuel cells. Nano Energy, 2022, 100, 107466.	16.0	31
165	Experiment, molecular simulation and density functional theory for investigation of fluid confined in MCM-41. Microporous and Mesoporous Materials, 2004, 67, 159-166.	4.4	30
166	Static and dynamic properties of model elastomer with various cross-linking densities: A molecular dynamics study. Journal of Chemical Physics, 2009, 131, 034903.	3.0	30
167	Fluorescent polymer nanotubes as bifunctional materials for selective sensing and fast removal of picric acid. Sensors and Actuators B: Chemical, 2018, 274, 102-109.	7.8	30
168	Precise molecular design for BN-modified polycyclic aromatic hydrocarbons toward mechanochromic materials. Journal of Materials Chemistry A, 2020, 8, 22023-22031.	10.3	30
169	Adsorption and dissociation of ammonia on clean and metal-covered TiO2 rutile (1 1 0) surfaces: A comparative DFT study. Applied Catalysis B: Environmental, 2011, 106, 510-519.	20.2	29
170	Adsorption and Separation of Xe in Metal–Organic Frameworks and Covalent–Organic Materials. Journal of Physical Chemistry C, 2014, 118, 10221-10229.	3.1	29
171	Size-Dependent Facilitation of Cancer Cell Targeting by Proteins Adsorbed on Nanoparticles. ACS Applied Materials & District Science (1988) Applied Materi	8.0	29
172	Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS Applied Materials & Interfaces, 2019, 11, 23822-23831.	8.0	29
173	Advances in Template Prepared Nanoâ€Oxides and their Applications: Polluted Water Treatment, Energy, Sensing and Biomedical Drug Delivery. Chemical Record, 2020, 20, 710-729.	5.8	29
174	A DIH-based equation for separation of CO2–CH4 in metal–organic frameworks and covalent–organic materials. Journal of Materials Chemistry A, 2014, 2, 11341.	10.3	28
175	PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage. Scientific Reports, 2015, 5, 8307.	3.3	28
176	Enhanced near-infrared shielding ability of (Li,K)-codoped WO ₃ for smart windows: DFT prediction validated by experiment. Nanotechnology, 2016, 27, 075203.	2.6	28
177	Amorphous Cobalt Iron Borate Grown on Carbon Paper as a Precatalyst for Water Oxidation. ChemSusChem, 2019, 12, 3524-3531.	6.8	28
178	GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Advanced Composites and Hybrid Materials, 2022, 5, 450-460.	21,1	28
179	Density functional theory for a primitive model of nanoparticle-block copolymer mixtures. Journal of Chemical Physics, 2007, 126, 144912.	3.0	27
180	Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy, 2013, 38, 1251-1257.	7.1	27

#	Article	IF	Citations
181	Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites. Physical Chemistry Chemical Physics, 2015, 17, 22959-22968.	2.8	27
182	Unexpected highly reversible topotactic CO ₂ sorption/desorption capacity for potassium dititanate. Journal of Materials Chemistry A, 2016, 4, 12889-12896.	10.3	27
183	Theoretical Study of Cooperativity in Multivalent Polymers for Colloidal Stabilization. Langmuir, 2005, 21, 9786-9791.	3.5	26
184	Storage of hydrogen in single-walled carbon nanotube bundles with optimized parameters: Effect of external surfaces. International Journal of Hydrogen Energy, 2007, 32, 1939-1942.	7.1	26
185	A contact-corrected density functional theory for electrolytes at an interface. Physical Chemistry Chemical Physics, 2014, 16, 3934.	2.8	26
186	Computer Screening of Dopants for the Development of New SnO2-Based Transparent Conducting Oxides. Journal of Physical Chemistry C, 2014, 118, 2037-2043.	3.1	26
187	Atomistic Modeling of Multishell Onion-Ring Bimetallic Nanowires and Clusters. Journal of Physical Chemistry C, 2008, 112, 4855-4860.	3.1	25
188	Selective capture of trace sulfur gas by porous covalent-organic materials. Chemical Engineering Science, 2015, 135, 373-380.	3.8	25
189	Dynamic separation of Xe and Kr by metal-organic framework and covalent-organic materials: a comparison with activated charcoal. Science China Chemistry, 2016, 59, 643-650.	8.2	24
190	Grand canonical Monte Carlo simulation of methane adsorbed in layered pillared pores. Physical Chemistry Chemical Physics, 2001, 3, 3150-3155.	2.8	23
191	Effects of pressure on structure and dynamics of model elastomers: A molecular dynamics study. Journal of Chemical Physics, 2008, 129, 154905.	3.0	23
192	Grand canonical Monte Carlo simulation of methane–carbon dioxide mixtures on ordered mesoporous carbon CMK-1. Separation and Purification Technology, 2009, 68, 50-60.	7.9	23
193	Screening <i>ië</i> >-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting. Nanotechnology, 2016, 27, 265701.	2.6	23
194	Size effect on the adsorption and dissociation of CO2 on Co nanoclusters. Applied Surface Science, 2017, 396, 539-546.	6.1	23
195	Screening metal-organic frameworks for capturing radioactive gas Rn in indoor air. Journal of Hazardous Materials, 2019, 366, 624-629.	12.4	22
196	Designing triphenylamine derivative dyes for highly effective dye-sensitized solar cells with near-infrared light harvesting up to 1100 nm. RSC Advances, 2014, 4, 48750-48757.	3.6	21
197	Enhancement Mechanism of the Conversion Effficiency of Dye-Sensitized Solar Cells Based on Nitrogen-, Fluorine-, and Iodine-Doped TiO ₂ Photoanodes. Journal of Physical Chemistry C, 2015, 119, 13425-13432.	3.1	21
198	Covalent Organic Polymers for Rapid Fluorescence Imaging of Latent Fingerprints. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21619-21627.	8.0	21

#	Article	IF	CITATIONS
199	Why are nanoparticles trapped at cell junctions when the cell density is high?. Nanoscale, 2019, 11, 6602-6609.	5.6	21
200	Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 7593023.	5.7	21
201	Computer simulation of adsorption of CCl4 in activated carbon and layered pillared materials at ambient temperature. Physical Chemistry Chemical Physics, 2002, 4, 3720-3726.	2.8	20
202	Computational Characterization of Hexagonally Ordered Carbon Nanopipes CMK-5 and Structural Optimization for H ₂ Storage. Langmuir, 2009, 25, 10863-10872.	3.5	20
203	The structure, energetics and thermal evolution of SiGe nanotubes. Nanotechnology, 2009, 20, 315705.	2.6	20
204	Synthesis of Gold Nanoparticles Coated with Polystyrene-block-poly(N-isopropylacrylamide) and Their Thermoresponsive Ultravioletâ^'Visible Absorbance. Industrial & Engineering Chemistry Research, 2010, 49, 2707-2715.	3.7	20
205	Self-Assembly of Patterned Nanoparticles on Cellular Membranes: Effect of Charge Distribution. Journal of Physical Chemistry B, 2013, 117, 6733-6740.	2.6	20
206	Formation of New Morphologies of Surfactantâ^Inorganicâ^'Water Systems under Spherical Confinements. Journal of Physical Chemistry C, 2008, 112, 2943-2948.	3.1	19
207	Aggregation of polymer-grafted nanoparticles in good solvents: A hierarchical modeling method. Journal of Chemical Physics, 2011, 135, 124703.	3.0	19
208	Hollow Nanotube Ru/Cu ₂₊₁ O Supported on Copper Foam as a Bifunctional Catalyst for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 4112-4119.	3.3	19
209	The effect of discrete attractive fluid–wall interaction potentials on adsorption isotherms of Lennard-Jones fluid in cylindrical pores. Journal of Chemical Physics, 2003, 119, 12586-12592.	3.0	18
210	Microstructure and Self-Assembly of Inhomogeneous Rigid Rodlike Chains between Two Neutral Surfaces:Â A Hybrid Density Functional Approach. Journal of Physical Chemistry B, 2006, 110, 21882-21889.	2.6	18
211	Understanding self-assembly of rod-coil copolymer in nanoslits. Journal of Chemical Physics, 2008, 128, 074902.	3.0	18
212	Universal version of density-functional theory for polymers with complex architecture. Physical Review E, 2009, 79, 021805.	2.1	18
213	Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites. Physical Chemistry Chemical Physics, 2014, 16, 18483.	2.8	18
214	Preparation and Characterization of Covalent Organic Polymer Supported Palladium Catalysts for Oxidation of CO and Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2014, 53, 1359-1367.	3.7	18
215	Delaminated layered double hydroxide delivers DNA molecules as sandwich nanostructure into cells via a non-endocytic pathway. Science Bulletin, 2017, 62, 686-692.	9.0	18
216	Dissolution-enhanced emission of 1,3,6,8-Tetrakis(p-benzoic acid)pyrene for detecting arginine and lysine amino acids. Dyes and Pigments, 2020, 175, 108131.	3.7	18

#	Article	IF	Citations
217	InP/TiO2 heterojunction for photoelectrochemical water splitting under visible-light. International Journal of Hydrogen Energy, 2020, 45, 11615-11624.	7.1	18
218	High Energy Density Hybrid Solid-State Li-Ion Batteries Enabled by a Gel/Ceramic/Gel Sandwich Electrolyte. ACS Applied Energy Materials, 2020, 3, 5113-5119.	5.1	17
219	MOF-derived CoN/CoFe/NC bifunctional electrocatalysts for zinc-air batteries. Applied Surface Science, 2022, 582, 152375.	6.1	17
220	Tetrahedral node diamondyne frameworks for CO2 adsorption and separation. Journal of Materials Chemistry A, 2014, 2, 4899.	10.3	16
221	PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment. Nanotechnology, 2016, 27, 495403.	2.6	16
222	A Fully Conjugated 3D Covalent Organic Framework Exhibiting Bandâ€like Transport with Ultrahigh Electron Mobility. Angewandte Chemie, 2021, 133, 9407-9411.	2.0	16
223	A Hybrid Approach for Microscopic Properties and Self-Assembly of Dendrimers between Two Hard Walls. Journal of Physical Chemistry B, 2007, 111, 10775-10784.	2.6	15
224	Molecular modeling of selectivity of single-walled carbon nanotube and MCM-41 for separation of methane and carbon dioxide. Separation and Purification Technology, 2010, 74, 280-287.	7.9	15
225	Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120312.	3.4	15
226	Fluorite TiO ₂ (111) Surface Phase for Enhanced Visible-Light Solar Energy Conversion. Journal of Physical Chemistry C, 2014, 118, 20107-20111.	3.1	15
227	From Inorganic to Organic Strategy To Design Porous Aromatic Frameworks for High-Capacity Gas Storage. Journal of Physical Chemistry C, 2015, 119, 3260-3267.	3.1	15
228	Counterintuitive cooperative endocytosis of like-charged nanoparticles in cellular internalization: computer simulation and experiment. Nanotechnology, 2017, 28, 085102.	2.6	15
229	Designing transition metal and nitrogen-codoped SrTiO ₃ (001) perovskite surfaces as efficient photocatalysts for water splitting. Sustainable Energy and Fuels, 2017, 1, 1968-1980.	4.9	15
230	Zeolitic-imidazolate Framework (ZIF)@ZnCo-ZIF Core-shell Template Derived Co, N-doped Carbon Catalysts for Oxygen Reduction Reaction. Engineered Science, 2018, , .	2.3	15
231	Coordination number models and equations of state for square-well pure and mixture fluids, Part I: Coordination number models and Monte Carlo simulation at high density. Chemical Engineering Science, 2000, 55, 2099-2109.	3.8	14
232	A Monte Carlo Study of Spherical Electrical Double Layer of Macroionsâ^Polyelectrolytes Systems in Salt Free Solutions. Journal of Physical Chemistry B, 2006, 110, 26232-26239.	2.6	14
233	Fracture mechanism of amorphous polymers at strain fields. Physical Chemistry Chemical Physics, 2014, 16, 24892-24898.	2.8	14
234	Design strategy of cell-penetrating copolymers for high efficient drugÂdelivery. Biomaterials, 2015, 52, 171-179.	11.4	14

#	Article	IF	Citations
235	A new concept analogous to homogeneous catalysis to construct in-situ regenerative electrodes for long-term oxygen evolution reaction. Nano Energy, 2020, 76, 105115.	16.0	14
236	Release of Lysozyme from the Branched Polyelectrolyteâ^'Lysozyme Complexation. Journal of Physical Chemistry B, 2008, 112, 4393-4400.	2.6	13
237	Adsorption of Nonuniformly Charged Fullerene-like Nanoparticles on Planar Polyelectrolyte Brushes in Aqueous Solutions. Langmuir, 2009, 25, 4965-4972.	3.5	13
238	Effects of Structure, Temperature, and Strain Rate on Mechanical Properties of SiGe Nanotubes. Journal of Physical Chemistry C, 2010, 114, 4309-4316.	3.1	13
239	Self-Assembly of Star-Polymer-Attached Nanospheres for Polymer Nanocomposites. Journal of Physical Chemistry C, 2010, 114, 5732-5740.	3.1	13
240	Highly Monodisperse Subâ€microspherical Poly(glycidyl methacrylate) Nanocomposites with Highly Stabilized Gold Nanoparticles. Macromolecular Chemistry and Physics, 2014, 215, 1098-1106.	2,2	13
241	Pyrene-Based Covalent Organic Polymers for Enhanced Photovoltaic Performance and Solar-Driven Hydrogen Production. ACS Applied Energy Materials, 2018, 1, 7007-7013.	5.1	13
242	Local diffusion coefficient of supercritical methane in activated carbon by molecular simulation. Carbon, 2003, 41, 2686-2689.	10.3	12
243	Counterion Valence-Induced Tunnel Formation in a System of Polyelectrolyte Brushes Grafted on Two Apposing Walls. Journal of Physical Chemistry B, 2009, 113, 11625-11631.	2.6	12
244	Tri-Petal Lilac-Like Perylene: Asymmetrical Substituted Platform for Regioselective Ether-Exchange Reaction. Synlett, 2017, 28, 2121-2125.	1.8	12
245	Regioselective Functionalization of Stable BNâ€Modified Luminescent Tetraphenes for Highâ€Resolution Fingerprint Imaging. Angewandte Chemie, 2019, 131, 10238-10243.	2.0	12
246	Sulfur-modified porous covalent organic polymers as bifunctional materials for efficient fluorescence detection and fast removal of heavy metal ions. Materials Chemistry Frontiers, 2021, 5, 3428-3435.	5.9	12
247	Density functional theory for rod-coil polymers with different size segments. Journal of Chemical Physics, 2011, 135, 054903.	3.0	11
248	Controlling the conductive network formation of polymer nanocomposites filled with nanorods through the electric field. Polymer, 2016, 101, 395-405.	3.8	11
249	Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation. Soft Matter, 2016, 12, 3074-3083.	2.7	11
250	I, N-Codoping Modification of TiO ₂ for Enhanced Photoelectrochemical H ₂ O Splitting in Visible-Light Region. Journal of Physical Chemistry C, 2017, 121, 26202-26208.	3.1	11
251	Hydrogen Bond Networks of Glycol Molecules on ZIF-8 Surfaces as Semipermeable Films for Efficient Carbon Capture. Journal of Physical Chemistry C, 2017, 121, 25347-25352.	3.1	11
252	Saddleâ€Shaped Building Blocks: A New Concept for Designing Fully Conjugated 3D Organic Semiconducting Materials. Chemistry - A European Journal, 2021, 27, 12012-12018.	3.3	11

#	Article	IF	Citations
253	Density functional theory of adsorption and phase behavior of the Lennard–Jones fluids confined in MCM-41 with a finite thickness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 247, 91-98.	4.7	10
254	Optimal feed ratio of benzene–propylene binary mixtures for alkylation in ZSM-5 by molecular simulation. Fluid Phase Equilibria, 2007, 260, 146-152.	2.5	10
255	Multiscaled density-functional theory for helical polymers. Journal of Chemical Physics, 2009, 131, 054901.	3.0	10
256	Occurrence of Taylor vortices in the flow between two rotating conical cylinders. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1228-1239.	3.3	10
257	Bandgap engineering of Magnéli phase TinO2nâ^'1: Electron-hole self-compensation. Journal of Chemical Physics, 2015, 143, 054701.	3.0	10
258	A mesoscale model for diffusion and permeation of shale gas at geological depth. AICHE Journal, 2018, 64, 1059-1066.	3.6	10
259	Design of Highâ€Performance Coâ€Based Alloy Nanocatalysts for the Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 4128-4135.	3.3	10
260	Fast identification of the stability of atomically dispersed bi-atom catalysts using a structure descriptor-based model. Journal of Materials Chemistry A, 2022, 10, 1451-1462.	10.3	10
261	Simulating Synthesis of Metal Nanorods, Nanoplates, and Nanoframes by Self-Assembly of Nanoparticle Building Blocks. Journal of Physical Chemistry C, 2009, 113, 3986-3997.	3.1	9
262	Communication: Density-functional theory for inhomogeneous hyperbranched polymeric fluids: Polydisperse effect of degree of branching. Journal of Chemical Physics, 2010, 133, 121101.	3.0	9
263	Mechanical properties of polygonal carbon nanotubes. Nanoscale, 2012, 4, 5420.	5.6	9
264	Yolk-like Pt nanoparticles as cathode catalysts for low-Pt-loading proton-exchange membrane fuel cells. Materials Today Energy, 2022, 27, 101043.	4.7	9
265	Coordination number models and equations of state for square-well pure and mixture fluids, Part II: Equations of state. Chemical Engineering Science, 2000, 55, 2111-2120.	3.8	8
266	Density functional theory for molecular orientation of hard rod fluids in hard slits. Chinese Physics B, 2007, 16, 2296-2303.	1.3	8
267	Orientation of rod molecules in selective slits: a density functional theory. Journal of Physics Condensed Matter, 2008, 20, 425221.	1.8	8
268	Nitrogen-Doped Nanoporous Carbons for Selective Separation of Ar/Kr/Xe/Rn Gases: An Experiment-Based Simulation Study. Journal of Physical Chemistry C, 2017, 121, 16308-16315.	3.1	8
269	Displacement of shale gas confined in illite shale by flue gas: A molecular simulation study. Chinese Journal of Chemical Engineering, 2021, 29, 295-303.	3.5	8
270	Facile synthesis of Fe ₂ P/Co embedded trifunctional electrocatalyst for high-performance anion exchange membrane fuel cells, rechargeable Zn–air batteries, and overall water splitting. Journal of Materials Chemistry A, 2022, 10, 16037-16045.	10.3	8

#	Article	IF	CITATIONS
271	Coordination number model and Monte Carlo simulation for highly asymmetric square well fluid mixtures. Fluid Phase Equilibria, 2001, 191, 111-126.	2.5	7
272	Theoretical study on tailoring symmetric and asymmetric thin films of diblock copolymers. Applied Surface Science, 2009, 255, 5775-5780.	6.1	7
273	Density functional theory for inhomogeneous ring polymeric fluids. Physical Review E, 2012, 86, 041805.	2.1	7
274	Interaction between two single-walled carbon nanotubes revisited: Structural stability of nanotube bundles. Chemical Engineering Science, 2007, 62, 6879-6884.	3.8	6
275	Synthesis of thermoresponsive polymeric micelles of PNIPAAmâ€ <i>b</i> àê€OMMA as a drug carrier for loading and controlled release of prednisolone. Journal of Applied Polymer Science, 2009, 111, 701-708.	2.6	6
276	Oxygen Reduction: Nitrogenâ€Doped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3356-3356.	21.0	6
277	A permeation model of shale gas in cylindrical-like kerogen pores at geological conditions. Chemical Engineering Science, 2019, 207, 457-463.	3.8	6
278	Predicting Device Parameters for Dye-Sensitized Solar Cells from Electronic Structure Calculations to Reproduce Experiment. ACS Applied Energy Materials, 2020, 3, 4367-4376.	5.1	6
279	A purely green approach to low-cost mass production of zeolitic imidazolate frameworks. Green Energy and Environment, 2023, 8, 775-784.	8.7	6
280	Introducing Engineered Science. Engineered Science, 2018, , .	2.3	6
281	A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application. Chinese Journal of Chemical Engineering, 2022, 43, 161-168.	3.5	6
282	Effect of the Bridging Conformation of Polyelectrolytes on the Static and Dynamic Behavior of Macroions. Langmuir, 2008, 24, 10138-10144.	3.5	5
283	Theoretical study of the structures of MgO(100)-supported Au clusters. Surface Science, 2009, 603, 881-886.	1.9	5
284	Modeling of highly efficient drug delivery system induced by self-assembly of nanocarriers: A density functional study. Science China Chemistry, 2013, 56, 249-255.	8.2	5
285	D–π–A–π–A Strategy to Design Benzothiadiazole–carbazoleâ€based Conjugated Polymer with High S Cell Voltage and Enhanced Photocurrent. Macromolecular Rapid Communications, 2015, 36, 2156-2161.	iolar 3.9	5
286	Robust Alginate Aerogel Absorbents for Removal of Heavy Metal and Organic Pollutant. Journal of Biobased Materials and Bioenergy, 2018, 12, 425-431.	0.3	5
287	Selective adsorption of SF6 in covalent- and metal–organic frameworks. Chinese Journal of Chemical Engineering, 2021, 39, 88-95.	3 . 5	5
288	Single atomic Cu-Anchored 2D covalent organic framework as a nanoreactor for CO2 capture and in-situ conversion: A computational study. Chemical Engineering Science, 2022, 253, 117536.	3.8	5

#	Article	IF	Citations
289	A stepwise approximation for modeling of the wall–fluid potential of a mesoscopic pore. Journal of Colloid and Interface Science, 2007, 308, 49-52.	9.4	4
290	Semiconducting and conducting transition of covalent-organic polymers induced by defects. Nanotechnology, 2012, 23, 395702.	2.6	4
291	Microstructure and intercalation dynamics of polymer chains in layered sheets. RSC Advances, 2013, 3, 21655.	3.6	4
292	Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains. AIP Advances, 2018, 8, 055210.	1.3	4
293	Nanopattern of the Inner Surface of Carbon Nanotubes for Self-Assembly of Nanoparticles:  A Multistep Monte Carlo Method. Journal of Physical Chemistry C, 2007, 111, 11802-11805.	3.1	3
294	Polyelectrolyteâ^'Macroion Complexation in 1:1 and 3:1 Salt Contents: A Brownian Dynamics Study. Journal of Physical Chemistry B, 2008, 112, 16505-16516.	2.6	3
295	Capture and separation of CO ₂ by porous coordination frameworks: Research progress and perspective. Scientia Sinica Chimica, 2012, 42, 235-244.	0.4	3
296	Electroless deposition of RuPd nanoparticles on porous carbon for hydrogen evolution in acid and alkaline media. Sustainable Energy and Fuels, 2022, 6, 2165-2169.	4.9	3
297	Thermodynamic stability of polypeptides folding within modeled ribosomal exit tunnel: A density functional study. European Physical Journal E, 2010, 32, 307-318.	1.6	2
298	Role of substrate softness in stabilizing surface nanobubbles. Green Energy and Environment, 2020, 5, 374-380.	8.7	2
299	Dissolution-enhanced emission of 1,3,6,8-tetrakis(<i>p</i> i>-benzoic acid)pyrene for selectively detecting protamine and "on-to-on―heparin detection in water. New Journal of Chemistry, 2021, 46, 345-351.	2.8	2
300	Fabrication of Nanoporous Silica Nanospheres and Nanotubes by Inorganic and Organic Double Templates. Materials Research Society Symposia Proceedings, 2004, 823, W4.16.1.	0.1	1
301	Understanding the Effect of Corners: Adsorption of Fluids in Three Different Shapes of Nanopores. Chinese Journal of Chemistry, 2009, 27, 505-512.	4.9	1
302	The bridge between first-principles calculations and grand canonical Monte Carlo simulations: Morse and Lennard-Jones force fields. Molecular Simulation, 2010, 36, 1157-1163.	2.0	1
303	Generalized Flory-Huggins theory-based equation of state for ring and chain fluids. Journal of Chemical Physics, 2012, 136, 124904.	3.0	1
304	Steered polymorphic nanodomains in TiO ₂ to boost visible-light photocatalytic oxidation. RSC Advances, 2022, 12, 9660-9670.	3.6	1
305	Decoupling of bilayer leaflets under gas supersaturation: nitrogen nanobubbles in a membrane and their implication in decompression sickness. Journal Physics D: Applied Physics, 2018, 51, 184001.	2.8	0
306	Frontispiece: Saddleâ€Shaped Building Blocks: A New Concept for Designing Fully Conjugated 3D Organic Semiconducting Materials. Chemistry - A European Journal, 2021, 27, .	3.3	0