
Vladimir Scholtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736996/publications.pdf Version: 2024-02-01

VIADIMID SCHOLTZ

#	Article	IF	CITATIONS
1	Decontamination of High-Efficiency Mask Filters From Respiratory Pathogens Including SARS-CoV-2 by Non-thermal Plasma. Frontiers in Bioengineering and Biotechnology, 2022, 10, 815393.	4.1	4
2	Non-Thermal Plasma Sources Based on Cometary and Point-to-Ring Discharges. Molecules, 2022, 27, 238.	3.8	4
3	Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties. Plants, 2022, 11, 1471.	3.5	12
4	Non-thermal pulsed plasma activated water: environmentally friendly way for efficient surface modification of semiconductor nanoparticles. Green Chemistry, 2021, 23, 898-911.	9.0	13
5	Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. Journal of Fungi (Basel, Switzerland), 2021, 7, 395.	3.5	12
6	Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. Journal of Food Safety, 2021, 41, e12919.	2.3	8
7	Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants—A Review. Plants, 2021, 10, 1616.	3.5	34
8	Inactivation of Dermatophytes Causing Onychomycosis Using Non-Thermal Plasma as a Prerequisite for Therapy. Journal of Fungi (Basel, Switzerland), 2021, 7, 715.	3.5	4
9	Inactivation of Acanthamoeba Cysts in Suspension and on Contaminated Contact Lenses Using Non-Thermal Plasma. Microorganisms, 2021, 9, 1879.	3.6	0
10	Inactivation of Schistosoma Using Low-Temperature Plasma. Microorganisms, 2021, 9, 32.	3.6	3
11	Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Frontiers in Microbiology, 2021, 12, 737635.	3.5	28
12	A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods, 2021, 10, 2927.	4.3	11
13	The red and blue luminescence in silicon nanocrystals with an oxidized, nitrogen-containing shell. Faraday Discussions, 2020, 222, 240-257.	3.2	8
14	Use of non-thermal plasma pre-treatment to enhance antibiotic action against mature Pseudomonas aeruginosa biofilms. World Journal of Microbiology and Biotechnology, 2020, 36, 108.	3.6	8
15	Inactivation of Dermatophytes Causing Onychomycosis and Its Therapy Using Non-Thermal Plasma. Journal of Fungi (Basel, Switzerland), 2020, 6, 214.	3.5	9
16	Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiologica, 2020, 65, 863-869.	2.3	7
17	Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic. PeerJ, 2020, 8, e10259.	2.0	34
18	The potential for use of non-thermal plasma in microbiology and medicine. Epidemiologie, Mikrobiologie, Imunologie, 2020, 69, 29-37.	0.3	4

VLADIMIR SCHOLTZ

#	Article	IF	CITATIONS
19	Nonthermal Plasma for Food Quality and Safety. Journal of Food Quality, 2019, 2019, 1-1.	2.6	6
20	Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in <i>Pseudomonas aeruginosa</i> : Difference between non-hospital and clinical isolates. AIP Advances, 2019, 9, .	1.3	13
21	Effects of Nonthermal Plasma on Wheat Grains and Products. Journal of Food Quality, 2019, 2019, 1-10.	2.6	45
22	Nonâ€ŧhermal plasmaâ€induced apoptosis in yeast <i>Saccharomyces cerevisiae</i> . Contributions To Plasma Physics, 2019, 59, e201800064.	1.1	11
23	Prevention of biofilm reâ€development on Tiâ€6Alâ€4V alloy by cometary discharge with a metallic grid. Contributions To Plasma Physics, 2019, 59, 166-172.	1.1	11
24	Modeling of concentric pattern of Serratia marcescens colony. Archives of Microbiology, 2019, 201, 87-92.	2.2	1
25	Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Science and Technology, 2018, 27, 065002.	3.1	31
26	Contribution to the Chemistry of Plasma-Activated Water. Plasma Physics Reports, 2018, 44, 125-136.	0.9	84
27	Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiologica, 2018, 63, 63-68.	2.3	21
28	Impact of various killing methods on EMA/PMA-qPCR efficacy. Food Control, 2018, 85, 23-28.	5.5	20
29	Medically important biofilms and non-thermal plasma. World Journal of Microbiology and Biotechnology, 2018, 34, 178.	3.6	29
30	Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Physics Reports, 2018, 44, 799-804.	0.9	28
31	Inactivation of Microbial Food Contamination of Plastic Cups Using Nonthermal Plasma and Hydrogen Peroxide. Journal of Food Quality, 2018, 2018, 1-7.	2.6	7
32	Comparing the biocidal properties of non-thermal plasma sources by reference protocol. European Physical Journal D, 2017, 71, 1.	1.3	2
33	Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension. Scientific Reports, 2017, 7, 15068.	3.3	7
34	Disinfection of archival documents using thyme essential oil, silver nanoparticles misting and low temperature plasma. Journal of Cultural Heritage, 2017, 24, 69-77.	3.3	33
35	Inactivation of dermatophyte infection by nonthermal plasma on animal model. Medical Mycology, 2016, 55, myw094.	0.7	11
36	The fitness change and the diversity maintenance in the growing mixed colony of two Serratia rubidaea clones. Archives of Microbiology, 2016, 198, 301-306.	2.2	2

VLADIMIR SCHOLTZ

#	Article	IF	CITATIONS
37	Inactivation of human pathogenic dermatophytes by non-thermal plasma. Journal of Microbiological Methods, 2015, 119, 53-58.	1.6	14
38	Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances, 2015, 33, 1108-1119.	11.7	463
39	Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide. Plasma Physics Reports, 2015, 41, 586-590.	0.9	2
40	Treatment of a Superficial Mycosis by Low-temperature Plasma: A Case Report. Prague Medical Report, 2014, 115, 73-78.	0.8	12
41	Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clinical Plasma Medicine, 2013, 1, 31-34.	3.2	29
42	Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide. Plasma Physics Reports, 2013, 39, 763-767.	0.9	4
43	Microbial Inactivation by Electric Discharge with Metallic Grid. Acta Physica Polonica A, 2013, 124, 62-65.	0.5	18
44	The persistent microbicidal effect in water exposed to the corona discharge. Physica Medica, 2012, 28, 230-239.	0.7	86
45	The Fungal Spores Survival Under the Low-Temperature Plasma. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 57-66.	0.5	4
46	The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiologica, 2011, 56, 77-79.	2.3	35
47	Inactivation of Prions Using Electrical DC Discharges at Atmospheric Pressure and Ambient Temperature. Plasma Processes and Polymers, 2011, 8, 316-323.	3.0	47
48	The Influence of Parameters of Stabilized Corona Discharge on its Microbicidal Effect. Acta Physica Polonica A, 2011, 119, 803-806.	0.5	12
49	The Determination of Microbicidal Effects of Corona Discharge Using the Image Analysis. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 227-231.	0.4	0
50	The "cometary" discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties. Journal of Physics: Conference Series, 2010, 223, 012005.	0.4	19
51	The Microbicidal Effect of Lowâ€Temperature Plasma Generated by Corona Discharge: Comparison of Various Microorganisms on an Agar Surface or in Aqueous Suspension. Plasma Processes and Polymers, 2010, 7, 237-243.	3.0	86
52	Plasma Jetlike Point-to-Point Electrical Discharge in Air and Its Bactericidal Properties. IEEE Transactions on Plasma Science, 2010, 38, 1978-1980.	1.3	24
53	Decontamination effects of low-temperature plasma generated by corona discharge. Part I: an overview. Prague Medical Report, 2007, 108, 115-27.	0.8	11
54	Decontamination effects of low-temperature plasma generated by corona discharge. Part II: new insights. Prague Medical Report, 2007, 108, 128-46.	0.8	14

VLADIMIR SCHOLTZ

#	Article	IF	CITATIONS
55	Application of atmospheric air plasma for polyethylene powder modification. , 2006, , .		0
56	Numerical Computing of Electrical Field of any Electrode Geometry. AIP Conference Proceedings, 2006, , .	0.4	1
57	Surfatron plasma-based sterilisation. European Physical Journal D, 2006, 56, B843-B847.	0.4	6
58	Corona discharge: A simple method of its generation and study of its bactericidal properties. European Physical Journal D, 2006, 56, B1333-B1338.	0.4	32
59	Computer processing of interferograms. European Physical Journal D, 2004, 54, C995-C1000.	0.4	0
60	Shelf life prolongation of fresh strawberries by nonthermal plasma treatment. Journal of Food Processing and Preservation, 0, , e16150.	2.0	1