
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from industrial combustion of biomass fuels. Environmental Pollution, 2022, 292, 118265.	3.7	11
2	Genotoxic and inflammatory effects of spruce and brown coal briquettes combustion aerosols on lung cells at the air-liquid interface. Science of the Total Environment, 2022, 806, 150489.	3.9	9
3	Phytoextraction and recovery of rare earth elements using willow (Salix spp.). Science of the Total Environment, 2022, 809, 152209.	3.9	15
4	Subacute inhalation of ultrafine particulate matter triggers inflammation without altering amyloid beta load in 5xFAD mice. NeuroToxicology, 2022, 89, 55-66.	1.4	6
5	Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). Environmental Health Perspectives, 2022, 130, 27003.	2.8	44
6	Short-sea shipping contributions to particle concentration in coastal areas: Impact and mitigation. Transportation Research, Part D: Transport and Environment, 2022, 109, 103342.	3.2	3
7	Exposure to naphthalene and \hat{l}^2 -pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. Environment International, 2022, 166, 107366.	4.8	18
8	Cyclic Ion Mobility Spectrometry Coupled to High-Resolution Time-of-Flight Mass Spectrometry Equipped with Atmospheric Solid Analysis Probe for the Molecular Characterization of Combustion Particulate Matter. Journal of the American Society for Mass Spectrometry, 2021, 32, 206-217.	1.2	6
9	Utilization of Barley Straw as Feedstock for the Production of Different Energy Vectors. Processes, 2021, 9, 726.	1.3	7
10	Variation of Absorption Ãngström Exponent in Aerosols From Different Emission Sources. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034094.	1.2	37
11	Emissions of Gases and Volatile Organic Compounds from Residential Heating: A Comparison of Brown Coal Briquettes and Logwood Combustion. Energy & Fuels, 2021, 35, 14010-14022.	2.5	8
12	Novel fine particle reduction method for wood stoves based on high-temperature electric collection of naturally charged soot particles. Journal of Cleaner Production, 2021, 312, 127831.	4.6	6
13	High Temperature Electrical Charger to Reduce Particulate Emissions from Small Biomass-Fired Boilers. Energies, 2021, 14, 109.	1.6	3
14	A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers. Renewable Energy, 2020, 145, 521-529.	4.3	9
15	The effect of the shoeless course on particle concentrations and dust composition in schools. Science of the Total Environment, 2020, 710, 136272.	3.9	8
16	Volatilisation of major, minor, and trace elements during thermal processing of fly ashes from waste- and wood-fired power plants in oxidising and reducing gas atmospheres. Waste Management, 2020, 102, 698-709.	3.7	17
17	Should industrial bagasse-fired boilers be phased out in China?. Journal of Cleaner Production, 2020, 265, 121716.	4.6	15
18	Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environmental Research, 2020, 185, 109360.	3.7	14

#	Article	IF	CITATIONS
19	Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Particle and Fibre Toxicology, 2020, 17, 27.	2.8	38
20	Detoxification of wood-combustion ashes containing Cr and Cd by thermal treatment. Journal of Hazardous Materials, 2020, 400, 123315.	6.5	9
21	Photochemical transformation of residential wood combustion emissions: dependence of organic aerosol composition on OH exposure. Atmospheric Chemistry and Physics, 2020, 20, 6357-6378.	1.9	16
22	Thermal treatment of municipal solid waste incineration fly ash: Impact of gas atmosphere on the volatility of major, minor, and trace elements. Waste Management, 2020, 114, 1-16.	3.7	24
23	Thermal separation of zinc and other valuable elements from municipal solid waste incineration fly ash. Journal of Cleaner Production, 2020, 253, 120014.	4.6	15
24	Impact of photochemical ageing on Polycyclic Aromatic Hydrocarbons (PAH) and oxygenated PAH (Oxy-PAH/OH-PAH) in logwood stove emissions. Science of the Total Environment, 2019, 686, 382-392.	3.9	32
25	Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 2019, 111, 44-56.	8.2	210
26	The measurement of Ag/In/Cd release under air-ingress conditions in the QUENCH-18 bundle test. Journal of Nuclear Materials, 2019, 517, 315-327.	1.3	7
27	Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood. Environmental Pollution, 2019, 248, 888-897.	3.7	28
28	Fine Particle Emissions from Sauna Stoves: Effects of Combustion Appliance and Fuel, and Implications for the Finnish Emission Inventory. Atmosphere, 2019, 10, 775.	1.0	10
29	A novel high-volume Photochemical Emission Aging flow tube Reactor (PEAR). Aerosol Science and Technology, 2019, 53, 276-294.	1.5	20
30	Design and validation of an air-liquid interface (ALI) exposure device based on thermophoresis. Aerosol Science and Technology, 2019, 53, 133-145.	1.5	17
31	PM2.5 concentration and composition in the urban air of Nanjing, China: Effects of emission control measures applied during the 2014 Youth Olympic Games. Science of the Total Environment, 2019, 652, 1-18.	3.9	26
32	Volatile Organic Compounds from Logwood Combustion: Emissions and Transformation under Dark and Photochemical Aging Conditions in a Smog Chamber. Environmental Science & Technology, 2018, 52, 4979-4988.	4.6	57
33	Analysis of high-temperature oxidation of wood combustion particles using tandem-DMA technique. Combustion and Flame, 2018, 191, 76-85.	2.8	8
34	Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances. Science of the Total Environment, 2018, 612, 636-648.	3.9	42
35	Considerations in analysing elemental carbon from marine engine exhaust using residual, distillate and biofuels. Journal of Aerosol Science, 2018, 126, 191-204.	1.8	16
36	Time-resolved chemical composition of small-scale batch combustion emissions from various wood species. Fuel, 2018, 233, 224-236.	3.4	26

#	Article	IF	CITATIONS
37	Emissions and atmospheric processes influence the chemical composition and toxicological properties of urban air particulate matter in Nanjing, China. Science of the Total Environment, 2018, 639, 1290-1310.	3.9	55
38	Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environmental Science and Pollution Research, 2017, 24, 10976-10991.	2.7	65
39	Operation and Emissions of a Hybrid Stove Fueled by Pellets and Log Wood. Energy & Fuels, 2017, 31, 1961-1968.	2.5	14
40	Emissions and ash behavior in a 500 kW pellet boiler operated with various blends of woody biomass and peat. Fuel, 2017, 202, 144-153.	3.4	59
41	In vitro toxicological effects of zinc containing nanoparticles with different physico-chemical properties. Toxicology in Vitro, 2017, 42, 105-113.	1.1	12
42	Time-resolved analysis of primary volatile emissions and secondary aerosol formation potential from a small-scale pellet boiler. Atmospheric Environment, 2017, 158, 236-245.	1.9	18
43	Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene. Environmental Science & Technology, 2017, 51, 1423-1432.	4.6	9
44	INDO-NORDEN – a consortium for developing holistic processes and land use practices for clean energy. Energy Procedia, 2017, 125, 363-371.	1.8	0
45	Peak exposures to main components of ash and gaseous diesel exhausts in closed and open ash loading stations at biomass-fuelled power plants. Chemosphere, 2017, 185, 183-191.	4.2	4
46	Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells. Environmental Toxicology, 2017, 32, 1487-1499.	2.1	29
47	Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel. PLoS ONE, 2016, 11, e0157964.	1.1	29
48	On-line analysis of organic emissions from residential wood combustion with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS). Fuel, 2016, 177, 334-342.	3.4	33
49	Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion. Environmental Science & Technology, 2016, 50, 10073-10081.	4.6	20
50	Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. Atmospheric Chemistry and Physics, 2016, 16, 13251-13269.	1.9	76
51	Black carbon and fine particle emissions in Finnish residential wood combustion: Emission projections, reduction measures and the impact of combustion practices. Atmospheric Environment, 2016, 140, 495-505.	1.9	44
52	Characterization and testing of a new environmental chamber. Atmospheric Measurement Techniques, 2015, 8, 2267-2278.	1.2	36
53	Hyphenation of a EC / OC thermal–optical carbon analyzer to photo-ionization time-of-flight mass spectrometric approach for characterization of primary and secondary particulate matter. Atmospheric Measurement Techniques, 2015, 8, 3337-3353.	1.2	31
54	A Novel Porous Tube Reactor for Nanoparticle Synthesis with Simultaneous Gas-Phase Reaction and Dilution. Aerosol Science and Technology, 2015, 49, 1170-1180.	1.5	2

#	Article	IF	CITATIONS
55	Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro. Science of the Total Environment, 2015, 511, 331-340.	3.9	39
56	Real-Time Chemical Composition Analysis of Particulate Emissions from Woodchip Combustion. Energy & Fuels, 2015, 29, 1143-1150.	2.5	14
57	Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 5939-5951.	1.9	28
58	Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation. Atmospheric Environment, 2015, 112, 370-380.	1.9	24
59	Analysis of Gas-Phase Carbonyl Compounds in Emissions from Modern Wood Combustion Appliances: Influence of Wood Type and Combustion Appliance. Energy & Fuels, 2015, 29, 3897-3907.	2.5	37
60	Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 2015, 155, 204-217.	5.1	76
61	Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation. Atmospheric Environment, 2015, 120, 427-437.	1.9	43
62	Needle trap sampling thermal-desorption resonance enhanced multiphoton ionization time-of-flight mass spectrometry for analysis of marine diesel engine exhaust. Analytical Methods, 2015, 7, 3608-3617.	1.3	13
63	Zinc nanoparticle formation and physicochemical properties in wood combustion – Experiments with zinc-doped pellets in a small-scale boiler. Fuel, 2015, 143, 404-413.	3.4	18
64	Ash behaviour and emission formation in a small-scale reciprocating-grate combustion reactor operated with wood chips, reed canary grass and barley straw. Fuel, 2015, 143, 80-88.	3.4	44
65	Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions. PLoS ONE, 2015, 10, e0126536.	1.1	111
66	Effective Density and Morphology of Particles Emitted from Small-Scale Combustion of Various Wood Fuels. Environmental Science & amp; Technology, 2014, 48, 13298-13306.	4.6	38
67	Role of microbial and chemical composition in toxicological properties of indoor and outdoor air particulate matter. Particle and Fibre Toxicology, 2014, 11, 60.	2.8	32
68	Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmospheric Environment, 2014, 87, 65-76.	1.9	102
69	Controlled oxidation of iron nanoparticles in chemical vapour synthesis. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	13
70	Different toxic mechanisms are activated by emission PM depending on combustion efficiency. Atmospheric Environment, 2014, 89, 623-632.	1.9	40
71	A multi-criteria analysis of climate, health and acidification impacts due to greenhouse gases and air pollution—The case of household-level heating technologies. Energy Policy, 2014, 74, 499-509.	4.2	19
72	Reference Particles for Toxicological Studies of Wood Combustion: Formation, Characteristics, and Toxicity Compared to Those of Real Wood Combustion Particulate Mass. Chemical Research in Toxicology, 2014, 27, 1516-1527.	1.7	21

#	Article	IF	CITATIONS
73	Evaluation of a Heat Exchanger Designed for Efficient Fine Particle Precipitation in Small-Scale Wood Combustion. Energy & Fuels, 2014, 28, 6058-6065.	2.5	18
74	Fine particle emissions in three different combustion conditions of a wood chip-fired appliance – Particulate physico-chemical properties and induced cell death. Atmospheric Environment, 2014, 86, 129-139.	1.9	72
75	Particle Emissions from a Marine Engine: Chemical Composition and Aromatic Emission Profiles under Various Operating Conditions. Environmental Science & Technology, 2014, 48, 11721-11729.	4.6	131
76	Effect of air staging on fine particle, dust and gaseous emissions from masonry heaters. Biomass and Bioenergy, 2014, 67, 167-178.	2.9	40
77	Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation. Atmospheric Environment, 2014, 94, 467-478.	1.9	24
78	Seasonal variation in the toxicological properties of size-segregated indoor and outdoor air particulate matter. Toxicology in Vitro, 2013, 27, 1550-1561.	1.1	35
79	Comparison of emissions and toxicological properties of fine particles from wood and oil boilers in small (20–25ÂkW) and medium (5–10ÀMW) scale. Atmospheric Environment, 2013, 77, 193-201.	1.9	57
80	Fine Particle and Gaseous Emissions from a Small-Scale Boiler Fueled by Pellets of Various Raw Materials. Energy & Fuels, 2013, 27, 7044-7053.	2.5	70
81	Characterization of Chemical and Microbial Species from Size-Segregated Indoor and Outdoor Particulate Samples. Aerosol and Air Quality Research, 2013, 13, 1212-1230.	0.9	16
82	Behavior of Alkali Metal Aerosol in a High-Temperature Porous Tube Sampling Probe. Aerosol Science and Technology, 2012, 46, 1151-1162.	1.5	21
83	Effects of a catalytic converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion. Chemosphere, 2012, 88, 278-285.	4.2	45
84	Reduction of gaseous and particulate emissions from small-scale wood combustion with a catalytic combustor. Atmospheric Environment, 2012, 50, 16-23.	1.9	41
85	Effects of Air Staging and Load on Fine-Particle and Gaseous Emissions from a Small-Scale Pellet Boiler. Energy & Fuels, 2011, 25, 4952-4960.	2.5	83
86	Physicochemical characterization of fine particles from small-scale wood combustion. Atmospheric Environment, 2011, 45, 7635-7643.	1.9	168
87	A novel particle sampling system for physico-chemical and toxicological characterization of emissions. Analytical and Bioanalytical Chemistry, 2011, 401, 3183-3195.	1.9	29
88	Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmospheric Environment, 2009, 43, 4855-4864.	1.9	104
89	The effects of operating conditions on emissions from masonry heaters and sauna stoves. Biomass and Bioenergy, 2009, 33, 513-520.	2.9	79
90	Particle Emissions from Small Wood-fired District Heating Units. Energy & Fuels, 2009, 23, 2974-2982.	2.5	77

#	Article	IF	CITATIONS
91	Effects of chlorine and sulphur on particle formation in wood combustion performed in a laboratory scale reactor. Fuel, 2008, 87, 2425-2436.	3.4	70
92	Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmospheric Environment, 2008, 42, 7862-7873.	1.9	183
93	Fine Particle and Gas Emissions from the Combustion of Agricultural Fuels Fired in a 20 kW Burner. Energy & Fuels, 2008, 22, 2033-2042.	2.5	102
94	Nucleation in a perforated tube diluter. Journal of Aerosol Science, 2007, 38, 172-191.	1.8	17
95	Effect of Wood Fuel on the Emissions from a Top-Feed Pellet Stove. Energy & Fuels, 2007, 21, 1151-1160.	2.5	166
96	Laboratory and Field Testing of Sampling Methods for Inhalable and Respirable Dust. Journal of Occupational and Environmental Hygiene, 2007, 5, 28-35.	0.4	19
97	PM1 AND CO EMISSIONS FROM FIVE WOOD SPECIES COMBUSTED IN A TOP-FEED PELLET STOVE. Journal of Aerosol Science, 2004, 35, S1103-S1104.	1.8	1