Masaru Nakayasu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiology and Biochemistry, 2018, 131, 70-77.	5.8	150
2	<scp>JRE</scp> 4 is a master transcriptional regulator of defenseâ€related steroidal glycoalkaloids in tomato. Plant Journal, 2018, 94, 975-990.	5.7	73
3	Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway. Plant Physiology, 2016, 171, 2458-2467.	4.8	67
4	Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant, Cell and Environment, 2020, 43, 1036-1046.	5.7	63
5	A Dioxygenase Catalyzes Steroid 16α-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. Plant Physiology, 2017, 175, 120-133.	4.8	52
6	Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. Plant Physiology, 2021, 186, 270-284.	4.8	45
7	Identification of a 3β-Hydroxysteroid Dehydrogenase/ 3-Ketosteroid Reductase Involved in α-Tomatine Biosynthesis in Tomato. Plant and Cell Physiology, 2019, 60, 1304-1315.	3.1	33
8	Efficient genome engineering using Platinum TALEN in potato. Plant Biotechnology, 2019, 36, 167-173.	1.0	32
9	Identification of α-Tomatine 23-Hydroxylase Involved in the Detoxification of a Bitter Glycoalkaloid. Plant and Cell Physiology, 2020, 61, 21-28.	3.1	29
10	The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nature Communications, 2021, 12, 1300.	12.8	25
11	Characterization of steroid 5α-reductase involved in α-tomatine biosynthesis in tomatoes. Plant Biotechnology, 2019, 36, 253-263.	1.0	22
12	ldentification of furostanol glycoside 26- <i>O</i> -β-glucosidase involved in steroidal saponin biosynthesis from <i>Dioscorea esculenta</i> . Plant Biotechnology, 2015, 32, 299-308.	1.0	15
13	Parallel evolution of UbiA superfamily proteins into aromatic <i>O</i> -prenyltransferases in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
14	Tomato <i>E8</i> Encodes a C-27 Hydroxylase in Metabolic Detoxification of α-Tomatine during Fruit Ripening. Plant and Cell Physiology, 2021, 62, 775-783.	3.1	14
15	Triterpenoid and Steroidal Saponins Differentially Influence Soil Bacterial Genera. Plants, 2021, 10, 2189.	3.5	12
16	Characterization of Câ€26 aminotransferase, indispensable for steroidal glycoalkaloid biosynthesis. Plant Journal, 2021, 108, 81-92.	5.7	7
17	Tandem Gene Duplication of Dioxygenases Drives the Structural Diversity of Steroidal Glycoalkaloids in the Tomato Clade. Plant and Cell Physiology, 2022, 63, 981-990.	3.1	5
18	Two Distinct Soil Disinfestations Differently Modify the Bacterial Communities in a Tomato Field. Agronomy, 2021, 11, 1375.	3.0	4