
Fuke Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736493/publications.pdf Version: 2024-02-01

FURE MANC

#	Article	IF	CITATIONS
1	Modeling of toughening effect in rigid particulate-filled polymer composites by artificial intelligence: a review. Advanced Composite Materials, 2023, 32, 250-267.	1.9	1
2	Machine Learningâ€Ðriven Biomaterials Evolution. Advanced Materials, 2022, 34, e2102703.	21.0	68
3	Enhancing the mechanical strength and toughness of epoxy resins with linear POSS nano-modifiers. Nanoscale Advances, 2022, 4, 1151-1157.	4.6	18
4	Hofmeister Effect Mediated Strong PHEMA-Gelatin Hydrogel Actuator. ACS Applied Materials & Interfaces, 2022, 14, 23826-23838.	8.0	38
5	GO film on flexible substrate: An approach to wearable colorimetric humidity sensor. Dyes and Pigments, 2021, 185, 108916.	3.7	17
6	Dielectric and mechanical properties of polycaprolactone/nano-barium titanate piezoelectric composites. Plastics, Rubber and Composites, 2021, 50, 299-306.	2.0	2
7	Metal–Organic Framework-Based Flexible Devices with Simultaneous Electrochromic and Electrofluorochromic Functions. ACS Applied Electronic Materials, 2021, 3, 1489-1495.	4.3	20
8	Enhanced dispersion of hydroxyapatite whisker in orthopedics 3D printing resin with improved mechanical performance. Journal of Applied Polymer Science, 2021, 138, 50811.	2.6	6
9	Microporosity mediated proliferation of preosteoblast cells on 3D printed bone scaffolds. Nano Select, 2021, 2, 1997.	3.7	6
10	Transparent low-voltage-driven soft actuators with silver nanowires Joule heaters. Polymer Chemistry, 2021, 12, 5251-5256.	3.9	8
11	Biomaterials by design: Harnessing data for future development. Materials Today Bio, 2021, 12, 100165.	5.5	13
12	<i>Ab initio</i> kinetics predictions for the role of pre-reaction complexes in hydrogen abstraction from 2-butanone by OH radicals. RSC Advances, 2020, 10, 33205-33212.	3.6	6
13	Highly Stable and Rapid Switching Electrochromic Thin Films Based on Metal–Organic Frameworks with Redox-Active Triphenylamine Ligands. ACS Applied Materials & Interfaces, 2020, 12, 7442-7450.	8.0	42
14	Star-Shaped Crosslinker for Multifunctional Shape Memory Polyurethane. Polymers, 2020, 12, 740.	4.5	10
15	High-Performance Colorimetric Room-Temperature NO ₂ Sensing Using Spin-Coated Graphene/Polyelectrolyte Reflecting Film. ACS Applied Materials & Interfaces, 2019, 11, 32390-32397.	8.0	13
16	Ultrasmall Designed Plasmon Resonators by Fused Colloidal Nanopatterning. ACS Applied Materials & Interfaces, 2019, 11, 45207-45213.	8.0	2
17	Progress in the Synthesis of Bifunctionalized Polyhedral Oligomeric Silsesquioxane. Polymers, 2019, 11, 2098.	4.5	49
18	High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites. Physical Chemistry Chemical Physics, 2018, 20, 9411-9418.	2.8	55

Fuke Wang

#	Article	IF	CITATIONS
19	Configuration-dependent optical properties and acid susceptibility of azulene compounds. Journal of Materials Chemistry C, 2018, 6, 5153-5160.	5.5	17
20	Energy transfer along a sequence controlled hybrid polymer. Journal of Polymer Science Part A, 2018, 56, 1225-1233.	2.3	9
21	High-strength boehmite-acrylate composites for 3D printing: Reinforced filler-matrix interactions. Composites Science and Technology, 2018, 154, 104-109.	7.8	36
22	Self-Assembly and Applications of Amphiphilic Hybrid POSS Copolymers. Molecules, 2018, 23, 2481.	3.8	22
23	Polyhedral oligomeric silsesquioxanes (POSSs): an important building block for organic optoelectronic materials. Journal of Materials Chemistry C, 2017, 5, 5283-5298.	5.5	138
24	Photopolymer resins for luminescent threeâ€dimensional printing. Journal of Applied Polymer Science, 2017, 134, 44988.	2.6	44
25	Liquid Resins-Based Additive Manufacturing. Journal of Molecular and Engineering Materials, 2017, 05, 1740004.	1.8	20
26	Tailoring the Diameters of Polyaniline Nanofibers for Sensor Application. ACS Omega, 2017, 2, 6506-6513.	3.5	15
27	High-Performance Nano-Photoinitiators with Improved Safety for 3D Printing. ACS Applied Materials & Interfaces, 2017, 9, 32418-32423.	8.0	28
28	Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. Journal of Materials Chemistry C, 2017, 5, 8694-8698.	5.5	75
29	Nanowire enhanced dimensional accuracy in acrylate resin-based 3D printing. New Journal of Chemistry, 2017, 41, 8407-8412.	2.8	12
30	Development of a highly transparent superamphiphobic plastic sheet by nanoparticle and chemical coating. Journal of Colloid and Interface Science, 2016, 467, 245-252.	9.4	12
31	Uniform Polyaniline Nanotubes Formation via Frozen Polymerization and Application for Oxygen Reduction Reactions. Macromolecular Chemistry and Physics, 2015, 216, 977-984.	2.2	6
32	Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution. Nano Letters, 2015, 15, 6066-6070.	9.1	42
33	A new aspect of cyclopentadithiophene based polymers: narrow band gap polymers upon protonation. Chemical Communications, 2015, 51, 13229-13232.	4.1	9
34	Origin of Near-Infrared Absorption for Azulene-Containing Conjugated Polymers upon Protonation or Oxidation. Journal of Physical Chemistry B, 2015, 119, 8176-8183.	2.6	25
35	Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film. ACS Applied Materials & Interfaces, 2015, 7, 19882-19886.	8.0	96
36	Azulene-based conjugated polymers with tuneable near-IR absorption up to 2.5Âμm. Polymer Chemistry, 2014, 5, 2980-2989.	3.9	43

Fuke Wang

#	Article	IF	CITATIONS
37	Pure Blueâ€Light Emissive Poly(oligofluorenes) with Bifunctional POSS in the Main Chain. Macromolecular Rapid Communications, 2014, 35, 801-806.	3.9	24
38	Template-Induced Structure Transition in Sub-10 nm Self-Assembling Nanoparticles. Nano Letters, 2014, 14, 2642-2646.	9.1	26
39	Thermally stable azobenzene dyes through hybridization with POSS. New Journal of Chemistry, 2013, 37, 735.	2.8	25
40	Nearâ€Infrared Responsive Conjugated Polymers to 1.5 μm and Beyond: Synthesis and Electrochromic Switching Application. Macromolecular Rapid Communications, 2013, 34, 431-436.	3.9	26
41	Directed Self-Assembly of Densely Packed Gold Nanoparticles. Langmuir, 2012, 28, 16782-16787.	3.5	30
42	Azulene-containing organic chromophores with tunable near-IR absorption in the range of 0.6 to 1.7 μm. Journal of Materials Chemistry, 2012, 22, 10448.	6.7	61
43	Enhanced Ordering in Gold Nanoparticles Self-Assembly through Excess Free Ligands. Langmuir, 2011, 27, 3355-3360.	3.5	57
44	Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. Journal of Materials Chemistry, 2011, 21, 2775-2782.	6.7	237
45	Aggregation-Mediated Optical Properties of pH-Responsive Anionic Conjugated Polyelectrolytes. Journal of the American Chemical Society, 2006, 128, 15786-15792.	13.7	109
46	Aggregation-Driven Growth of Size-Tunable Organic Nanoparticles Using Electronically Altered Conjugated Polymers. Journal of the American Chemical Society, 2005, 127, 10350-10355.	13.7	167
47	Stimuli-Responsive Conjugated Copolymers Having Electro-Active Azulene and Bithiophene Units in the Polymer Skeleton:Â Effect of Protonation and p-Doping on Conducting Properties. Macromolecules, 2004, 37, 3222-3230.	4.8	116
48	Alternating Aromatic and Transannular Chromophores with and without Linker:Â Effect of Transannular Ï€â^ĭī€ Interaction on the Optical Property of Dithiaparacyclophane-based Copolymers. Macromolecules, 2004, 37, 3546-3553.	4.8	43
49	Post-Coordination of Multinuclear Transitional Metal Clusters to Azulene-Based Polymers:  A Novel Strategy for Tuning Properties in π-Conjugated Polymers. Organic Letters, 2003, 5, 4791-4794.	4.6	43
50	The First Fully Characterized 1,3-Polyazulene:  High Electrical Conductivity Resulting from Cation Radicals and Polycations Generated upon Protonation. Organic Letters, 2003, 5, 995-998.	4.6	85