
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736161/publications.pdf Version: 2024-02-01

POSINA LÃ3DEZ-EANDIÃ+O

#	Article	IF	CITATIONS
1	Oral Exposure to House Dust Mite Activates Intestinal Innate Immunity. Foods, 2021, 10, 561.	1.9	2
2	Retinoic Acid Induces Functionally Suppressive Foxp3+RORÎ ³ t+ T Cells In Vitro. Frontiers in Immunology, 2021, 12, 675733.	2.2	13
3	Triacylglycerides and Phospholipids from Egg Yolk Differently Influence the Immunostimulating Properties of Egg White Proteins. Nutrients, 2021, 13, 3301.	1.7	2
4	A Mouse Model of Oral Sensitization to Hen's Egg White. Methods in Molecular Biology, 2021, 2223, 49-65.	0.4	0
5	Role of dietary lipids in food allergy. Critical Reviews in Food Science and Nutrition, 2020, 60, 1797-1814.	5.4	19
6	Egg yolk augments type 2 immunity by activating innate cells. European Journal of Nutrition, 2020, 59, 3245-3256.	1.8	4
7	Ovalbumin-Derived Peptides Activate Retinoic Acid Signalling Pathways and Induce Regulatory Responses Through Toll-Like Receptor Interactions. Nutrients, 2020, 12, 831.	1.7	7
8	Oral Immunotherapy with Egg Peptides Induces Innate and Adaptive Tolerogenic Responses. Molecular Nutrition and Food Research, 2019, 63, e1900144.	1.5	11
9	Egg white peptide-based immunotherapy enhances vitamin A metabolism and induces RORÎ ³ t+ regulatory T cells. Journal of Functional Foods, 2019, 52, 204-211.	1.6	11
10	Assessment of the Allergenic Potential of the Main Egg White Proteins in BALB/c Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 2970-2976.	2.4	23
11	Immunomodulating peptides for food allergy prevention and treatment. Critical Reviews in Food Science and Nutrition, 2018, 58, 1629-1649.	5.4	25
12	Egg Yolk Provides Th2 Adjuvant Stimuli and Promotes Sensitization to Egg White Allergens in BALB/c Mice. Molecular Nutrition and Food Research, 2018, 62, e1800057.	1.5	16
13	Pepsin Egg White Hydrolysate Improves Glucose Metabolism Complications Related to Metabolic Syndrome in Zucker Fatty Rats. Nutrients, 2018, 10, 441.	1.7	18
14	Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food and Function, 2017, 8, 437-443.	2.1	35
15	Sensitizing and Eliciting Capacity of Egg White Proteins in BALB/c Mice As Affected by Processing. Journal of Agricultural and Food Chemistry, 2017, 65, 4500-4508.	2.4	14
16	Hydrolysed ovalbumin offers more effective preventive and therapeutic protection against egg allergy than the intact protein. Clinical and Experimental Allergy, 2017, 47, 1342-1354.	1.4	22
17	Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. Innovative Food Science and Emerging Technologies, 2017, 43, 154-162.	2.7	31
18	Oral Food Desensitization in Children With IgE-Mediated Cow's Milk Allergy: Immunological Changes Underlying Desensitization. Allergy, Asthma and Immunology Research, 2017, 9, 35.	1.1	33

#	Article	IF	CITATIONS
19	Assessment of IgE Reactivity of β-Casein by Western Blotting After Digestion with Simulated Gastric Fluid. Methods in Molecular Biology, 2017, 1592, 165-175.	0.4	2
20	Antibody Production, Anaphylactic Signs, and T-Cell Responses Induced by Oral Sensitization With Ovalbumin in BALB/c and C3H/HeOuJ Mice. Allergy, Asthma and Immunology Research, 2016, 8, 239.	1.1	22
21	Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats. PLoS ONE, 2016, 11, e0151193.	1.1	62
22	Regulation of Exacerbated Immune Responses in Human Peripheral Blood Cells by Hydrolysed Egg White Proteins. PLoS ONE, 2016, 11, e0151813.	1.1	13
23	Physiological role of SLC12 family members in the kidney. American Journal of Physiology - Renal Physiology, 2016, 311, F131-F144.	1.3	34
24	Egg white hydrolysates with in vitro biological multiactivities to control complications associated with the metabolic syndrome. European Food Research and Technology, 2016, 242, 61-69.	1.6	41
25	Hypoallergenic hydrolysates of egg white proteins modulate allergen responses induced ex vivo on spleen cells from sensitized mice. Food Research International, 2016, 89, 661-669.	2.9	11
26	Egg protein hydrolysates: New culinary textures. International Journal of Gastronomy and Food Science, 2016, 3, 17-22.	1.3	32
27	Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells. Food and Function, 2016, 7, 1048-1056.	2.1	44
28	Clinical efficacy and immunological changes subjacent to egg oral immunotherapy. Annals of Allergy, Asthma and Immunology, 2015, 114, 504-509.	0.5	11
29	Egg proteins as allergens and the effects of the food matrix and processing. Food and Function, 2015, 6, 694-713.	2.1	67
30	Skim milk protein distribution as a result of very high hydrostatic pressure. Food Research International, 2015, 72, 74-79.	2.9	28
31	Effect of high pressure-assisted crosslinking of ovalbumin and egg white by transglutaminase on their potential allergenicity. Innovative Food Science and Emerging Technologies, 2015, 29, 143-150.	2.7	45
32	Immunological behavior of in vitro digested eggâ€white lysozyme. Molecular Nutrition and Food Research, 2014, 58, 614-624.	1.5	34
33	Anaphylaxis Induced by a Drug Containing Lysozyme and Papain: Influence of Papain on the IgE Response. International Archives of Allergy and Immunology, 2014, 165, 83-90.	0.9	6
34	ldentification of IgE-Binding Peptides in Hen Egg Ovalbumin Digested in Vitro with Human and Simulated Gastroduodenal Fluids. Journal of Agricultural and Food Chemistry, 2014, 62, 152-158.	2.4	31
35	In vitro digestibility of bovine β-casein with simulated and human oral and gastrointestinal fluids. Identification and IgE-reactivity of the resultant peptides. Food Chemistry, 2014, 143, 514-521.	4.2	37
36	Mapping of IgE epitopes in in vitro gastroduodenal digests of β-lactoglobulin produced with human and simulated fluids. Food Research International, 2014, 62, 1127-1133.	2.9	29

#	Article	IF	CITATIONS
37	lgE-binding and inÂvitro gastrointestinal digestibility of egg allergens in the presence of polysaccharides. Food Hydrocolloids, 2013, 30, 597-605.	5.6	23
38	Immunoreactivity of hen egg allergens: Influence on in vitro gastrointestinal digestion of the presence of other egg white proteins and of egg yolk. Food Chemistry, 2013, 136, 775-781.	4.2	49
39	High-pressure treatment of milk in industrial and pilot-scale equipments: effect of the treatment conditions on the protein distribution in different milk fractions. European Food Research and Technology, 2013, 236, 499-506.	1.6	14
40	Influence of the Carbohydrate Moieties on the Immunoreactivity and Digestibility of the Egg Allergen Ovomucoid. PLoS ONE, 2013, 8, e80810.	1.1	28
41	In vivo methods for testing allergenicity show that high hydrostatic pressure hydrolysates of β-lactoglobulin are immunologically inert. Journal of Dairy Science, 2012, 95, 541-548.	1.4	54
42	In vitro digestibility and allergenicity of emulsified hen egg. Food Research International, 2012, 48, 404-409.	2.9	18
43	Identification of an IgE Reactive Peptide in Hen Egg Riboflavin Binding Protein Subjected to Simulated Gastrointestinal Digestion. Journal of Agricultural and Food Chemistry, 2012, 60, 5215-5220.	2.4	9
44	Human IgE binding and in vitro digestion of S-OVA. Food Chemistry, 2012, 135, 1842-1847.	4.2	9
45	Effect of the high-pressure-release phase on the protein composition of the soluble milk fraction. Journal of Dairy Science, 2012, 95, 6293-6299.	1.4	9
46	Bioactive Peptides. , 2012, , 41-68.		1
47	Human Immunoglobulin E (IgE) Binding to Heated and Clycated Ovalbumin and Ovomucoid before and after in Vitro Digestion. Journal of Agricultural and Food Chemistry, 2011, 59, 10044-10051.	2.4	102
48	Susceptibility of lysozyme to in-vitro digestion and immunoreactivity of its digests. Food Chemistry, 2011, 127, 1719-1726.	4.2	42
49	Evaluation of allergenic potential of protein ingredients through in vitro methods. Proceedings of the Nutrition Society, 2010, 69, .	0.4	0
50	Vascular effects of egg white-derived peptides in resistance arteries from rats. Structure-activity relationships. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	1.7	31
51	Egg White Ovalbumin Digestion Mimicking Physiological Conditions. Journal of Agricultural and Food Chemistry, 2010, 58, 5640-5648.	2.4	86
52	Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocolloids, 2009, 23, 593-599.	5.6	50
52 53	Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocolloids, 2009, 23, 593-599. Glycosylated dairy components: Their roles in nature and ways to make use of their biofunctionality in dairy products. , 2009, , 170-211.	5.6	50 12

#	Article	IF	CITATIONS
55	Effect of the long-term intake of an egg white hydrolysate on the oxidative status and blood lipid profile of spontaneously hypertensive rats. Food Chemistry, 2008, 109, 361-367.	4.2	121
56	Hydrolysis under High Hydrostatic Pressure as a Means to Reduce the Potencial Allergenicity of β-Lactoglobulin. Journal of Allergy and Clinical Immunology, 2008, 121, S249-S249.	1.5	3
57	Immunoreactivity and digestibility of high-pressure-treated whey proteins. International Dairy Journal, 2008, 18, 367-376.	1.5	68
58	Proteolytic Pattern, Antigenicity, and Serum Immunoglobulin E Binding of β-Lactoglobulin Hydrolysates Obtained by Pepsin and High-Pressure Treatments. Journal of Dairy Science, 2008, 91, 928-938.	1.4	57
59	Changes in the Ovalbumin Proteolysis Profile by High Pressure and Its Effect on IgG and IgE Binding. Journal of Agricultural and Food Chemistry, 2008, 56, 11809-11816.	2.4	65
60	Activity against <i>Listeria monocytogenes</i> of human milk during lactation. A preliminary study. Journal of Dairy Research, 2008, 75, 24-29.	0.7	6
61	Effect of Combined Use of High Pressure and Proteolytic Enzymes on Milk Allergens. ACS Symposium Series, 2008, , 400-410.	0.5	Ο
62	Hydrolysis under High Hydrostatic Pressure as a Means To Reduce the Binding of β-Lactoglobulin to Immunoglobulin E from Human Sera. Journal of Food Protection, 2008, 71, 1453-1459.	0.8	39
63	Vasodilator effects of peptides derived from egg white proteins. Regulatory Peptides, 2007, 140, 131-135.	1.9	75
64	Vascular effects and antihypertensive properties of κ-casein macropeptide. International Dairy Journal, 2007, 17, 1473-1477.	1.5	44
65	Unfolding and Refolding of β-Lactoglobulin Subjected to High Hydrostatic Pressure at Different pH Values and Temperatures and Its Influence on Proteolysis. Journal of Agricultural and Food Chemistry, 2007, 55, 5282-5288.	2.4	54
66	Vascular Effects, Angiotensin I-Converting Enzyme (ACE)-Inhibitory Activity, and Antihypertensive Properties of Peptides Derived from Egg White. Journal of Agricultural and Food Chemistry, 2007, 55, 10615-10621.	2.4	79
67	Angiotensin-converting enzyme activity in plasma and tissues of spontaneously hypertensive rats after the short- and long-term intake of hydrolysed egg white. Molecular Nutrition and Food Research, 2007, 51, 555-563.	1.5	29
68	Antihypertensive, ACE-inhibitory and vasodilator properties of an egg white hydrolysate: Effect of a simulated intestinal digestion. Food Chemistry, 2007, 104, 163-168.	4.2	94
69	Application of capillary zone electrophoresis to the characterisation of the human milk protein profile and its evolution throughout lactation. Journal of Chromatography A, 2007, 1146, 110-117.	1.8	12
70	The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chemistry, 2007, 104, 1734-1739.	4.2	101
71	Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass. Food Hydrocolloids, 2007, 21, 433-443.	5.6	226
72	Egg-Protein-Derived Peptides with Antihypertensive Activity. , 2007, , 199-211.		13

#	Article	IF	CITATIONS
73	Effect of Simulated Gastrointestinal Digestion on the Antihypertensive Properties of ACE-Inhibitory Peptides Derived from Ovalbumin. Journal of Agricultural and Food Chemistry, 2006, 54, 726-731.	2.4	124
74	Functional Improvement of Milk Whey Proteins Induced by High Hydrostatic Pressure. Critical Reviews in Food Science and Nutrition, 2006, 46, 351-363.	5.4	79
75	Changes in Chymotrypsin Hydrolysis of β-Lactoglobulin A Induced by High Hydrostatic Pressure. Journal of Agricultural and Food Chemistry, 2006, 54, 2333-2341.	2.4	39
76	Long-term intake of egg white hydrolysate attenuates the development of hypertension in spontaneously hypertensive rats. Life Sciences, 2006, 78, 2960-2966.	2.0	67
77	High pressure-induced changes in milk proteins and possible applications in dairy technology. International Dairy Journal, 2006, 16, 1119-1131.	1.5	131
78	Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal, 2006, 16, 1277-1293.	1.5	325
79	Health effects and technological features of caseinomacropeptide. International Dairy Journal, 2006, 16, 1324-1333.	1.5	194
80	Influence of high hydrostatic pressure on the proteolysis of β-lactoglobulin A by trypsin. Journal of Dairy Research, 2006, 73, 121-128.	0.7	48
81	Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats. British Journal of Nutrition, 2005, 94, 731-737.	1.2	118
82	Study on β-lactoglobulin glycosylation with dextran: effect on solubility and heat stability. Food Chemistry, 2005, 93, 689-695.	4.2	130
83	Effect of the dry-heating conditions on the glycosylation of β-lactoglobulin with dextran through the Maillard reaction. Food Hydrocolloids, 2005, 19, 831-837.	5.6	72
84	Comparative study of egg white proteins from different species by chromatographic and electrophoretic methods. European Food Research and Technology, 2005, 221, 542-546.	1.6	50
85	Angiotensin l–Converting Enzyme Inhibitory Activity of Peptides Derived from Egg White Proteins by Enzymatic Hydrolysis. Journal of Food Protection, 2004, 67, 1914-1920.	0.8	176
86	Antioxidant Activity of Peptides Derived from Egg White Proteins by Enzymatic Hydrolysis. Journal of Food Protection, 2004, 67, 1939-1944.	0.8	423
87	κ-Casein Macropeptides from Cheese Whey: Physicochemical, Biological, Nutritional, and Technological Features for Possible Uses. Food Reviews International, 2004, 20, 329-355.	4.3	84
88	High-Pressure Effects on Maillard Reaction between Glucose and Lysine. Journal of Agricultural and Food Chemistry, 2003, 51, 394-400.	2.4	92
89	Plasmin Activity in Pressurized Milk. Journal of Dairy Science, 2003, 86, 728-734.	1.4	41
90	Angiotensin I Converting Enzyme–Inhibitory Activity of Bovine, Ovine, and Caprine κ-Casein Macropeptides and Their Tryptic Hydrolysates. Journal of Food Protection, 2003, 66, 1686-1692.	0.8	50

#	Article	IF	CITATIONS
91	Characterization and Functional Properties of Lactosyl Caseinomacropeptide Conjugates. Journal of Agricultural and Food Chemistry, 2002, 50, 5179-5184.	2.4	61
92	Modifications in milk proteins induced by heat treatment and homogenization and their influence on susceptibility to proteolysis. International Dairy Journal, 2002, 12, 679-688.	1.5	32
93	Determination of Vegetal Proteins in Milk Powder by Sodium Dodecyl Sulfate–Capillary Gel Electrophoresis: Interlaboratory Study. Journal of AOAC INTERNATIONAL, 2002, 85, 1090-1095.	0.7	21
94	Determination of Vegetal Proteins in Milk Powder by Enzyme-Linked Immunosorbent Assay: Interlaboratory Study. Journal of AOAC INTERNATIONAL, 2002, 85, 1390-1397.	0.7	28
95	Platelet Aggregation Inhibitory Activity of Bovine, Ovine, and Caprine κ-Casein Macropeptides and Their Tryptic Hydrolysates. Journal of Food Protection, 2002, 65, 1992-1996.	0.8	45
96	Effect of homogenisation on protein distribution and proteolysis during storage of indirectly heated UHT milk. Dairy Science and Technology, 2002, 82, 589-599.	0.9	11
97	Changes in Phosphoglyceride Composition during Storage of Ultrahigh-Temperature Milk, as Assessed by 31P-Nuclear Magnetic Resonance: Possible Involvement of Thermoresistant Microbial Enzymes. Journal of Food Protection, 2001, 64, 850-855.	0.8	16
98	Heterogeneity of caprine Î $^{\circ}$ -casein macropeptide. Journal of Dairy Research, 2001, 68, 197-208.	0.7	24
99	Analysis of monosaccharides in bovine, caprine and ovine κ-casein macropeptide by gas chromatography. Chromatographia, 2001, 53, 525-528.	0.7	6
100	Release of galactose and N-acetylglucosamine during the storage of UHT milk. Food Chemistry, 2001, 72, 407-412.	4.2	25
101	Capillary electrophoresis for the analysis of food proteins of animal origin. Electrophoresis, 2001, 22, 1489-1502.	1.3	43
102	Does processing of a powder or in-bottle-sterilized liquid infant formula affect calcium bioavailability?. Nutrition, 2001, 17, 326-331.	1.1	29
103	Chromatographic characterization of ovine κ-casein macropeptide. Journal of Dairy Research, 2000, 67, 349-359.	0.7	32
104	Characterization of peptides produced by the action of psychrotrophic proteinases on κ-casein. Journal of Dairy Research, 2000, 67, 625-630.	0.7	34
105	Distribution of nitrogen in goats' milk and use of capillary electrophoresis to determine casein fractions. Journal of Dairy Research, 2000, 67, 113-117.	0.7	6
106	Protein nutritive utilization in rats fed powder and liquid infant formulas / Utilización nutritiva de la proteÃna en ratas alimentadas con formulas infantiles en polvo y lÃquidas. Food Science and Technology International, 2000, 6, 9-16.	1.1	19
107	Micelar Changes Induced by High Pressure. Influence in the Proteolytic Activity and Organoleptic Properties of Milk. Journal of Dairy Science, 2000, 83, 2184-2189.	1.4	71
108	Use of high-pressure-treated milk for the production of reduced-fat cheese. International Dairy Journal, 2000, 10, 467-475.	1.5	47

#	Article	IF	CITATIONS
109	Detection of rennet whey solids in UHT milk by capillary electrophoresis. International Dairy Journal, 2000, 10, 333-338.	1.5	35
110	A1H-NMR Study on the Effect of High Pressures on β-Lactoglobulin. Journal of Agricultural and Food Chemistry, 2000, 48, 3906-3912.	2.4	48
111	Detection of the presence of soya protein in milk powder by sodium dodecyl sulfate capillary electrophoresis. Journal of Chromatography A, 1999, 836, 153-160.	1.8	30
112	Proteolysis, protein distribution and stability of UHT milk during storage at room temperature. Journal of the Science of Food and Agriculture, 1999, 79, 1171-1178.	1.7	35
113	Review: Selected indicators of the quality of thermal processed milk / Revisión: Indicadores seleccionados para el control de calidad de la leche tratada térmicamente. Food Science and Technology International, 1999, 5, 121-137.	1.1	24
114	Contribution of low molecular weight water soluble compounds to the taste of cheeses made of cows', ewes' and goats' milk. International Dairy Journal, 1999, 9, 613-621.	1.5	61
115	Characterization of cheese proteolysis by capillary electrophoresis and reverse-phase HPLC analyses of peptides. European Food Research and Technology, 1998, 206, 259-263.	0.6	6
116	Effects of High Pressures Combined with Moderate Temperatures on the Rennet Coagulation Properties of Milk. International Dairy Journal, 1998, 8, 623-627.	1.5	62
117	Distribution of minerals and proteins between the soluble and colloidal phases of pressurized milks from different species. Journal of Dairy Research, 1998, 65, 69-78.	0.7	112
118	Microbiological and Chemical Changes in High-Pressure-Treated Milk during Refrigerated Storage. Journal of Food Protection, 1998, 61, 735-737.	0.8	55
119	Cheese-making properties of ovine and caprine milks submitted to high pressures. Dairy Science and Technology, 1998, 78, 341-350.	0.9	19
120	Application of capillary electrophoresis to the study of proteolysis of caseins. Journal of Dairy Research, 1997, 64, 221-230.	0.7	55
121	Rennet Coagulation of Milk Subjected to High Pressures. Journal of Agricultural and Food Chemistry, 1997, 45, 3233-3237.	2.4	64
122	Assessment of the quality of dairy products by capillary electrophoresis of milk proteins. Biomedical Applications, 1997, 697, 231-242.	1.7	67
123	Denaturation of β-lactoglobulin and native enzymes in the plate exchanger and holding tube section during continuous flow pasteurization of milk. Food Chemistry, 1997, 58, 49-52.	4.2	14
124	Study of the Formation of Caseinomacropeptides in Stored Ultra-High-Temperature-Treated Milk by Capillary Electrophoresis. Journal of Agricultural and Food Chemistry, 1996, 44, 3845-3848.	2.4	38
125	The Effects of High Pressure on Whey Protein Denaturation and Cheese-Making Properties of Raw Milk. Journal of Dairy Science, 1996, 79, 929-936.	1.4	182
126	Assessment of the Thermal Treatment of Milk during Continuous Microwave and Conventional Heating. Journal of Food Protection, 1996, 59, 889-892.	0.8	35

#	Article	IF	CITATIONS
127	Effects of continuous flow microwave treatment on chemical and microbiological characteristics of milk. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 15-18.	0.7	25
128	Biologically active peptides and enzymatic approaches to their production. Enzyme and Microbial Technology, 1996, 18, 162-183.	1.6	199
129	Enzymic Oligopeptide Synthesis Using a Minimal Protection Strategy: Sequential Assembly of a Growing Oligopeptide Chain. Journal of the American Chemical Society, 1995, 117, 6175-6181.	6.6	28
130	Enzymatic catalysis in heterogenous mixtures of substrates: The role of the liquid phase and the effects of "Adjuvants― Biotechnology and Bioengineering, 1994, 43, 1016-1023.	1.7	48
131	Protease-catalyzed synthesis of oligopeptides in heterogenous substrate mixtures. Biotechnology and Bioengineering, 1994, 43, 1024-1030.	1.7	59
132	Changes in furosine and proteins of UHT-treated milks stored at high ambient temperatures. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 198, 302-306.	0.7	38
133	Effect of a food-grade enzyme preparation fromAspergillus oryzae on free fatty acid release in Manchego-type cheese from ovine and bovine milk. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 262-264.	0.7	8
134	The Use of Lipolytic and Proteolytic Enzymes in the Manufacture of Manchego Type Cheese from Ovine and Bovine Milk. Journal of Dairy Science, 1994, 77, 2139-2149.	1.4	40
135	Proteolysis during storage of UHT milk: differences between whole and skim milk. Journal of Dairy Research, 1993, 60, 339-347.	0.7	50
136	Application of reversed-phase HPLC to the study of proteolysis in UHT milk. Journal of Dairy Research, 1993, 60, 111-116.	0.7	47
137	Comparative study by HPLC of caseinomacropeptides from cows', ewes' and goats' milk. Journal of Dairy Research, 1993, 60, 117-121.	0.7	39
138	Assessment of Quality of Commercial UHT Milks by Chromatographic and Electrophoretic Methods. Journal of Food Protection, 1993, 56, 263-265.	0.8	20
139	Proteolytic activity of two commercial proteinases from Aspergillus oryzae and Bacillus subtilis on ovine and bovine caseins. Journal of Dairy Research, 1991, 58, 461-467.	0.7	11
140	Effect of heat treatment on the proteolytic/peptidolytic enzyme system of a <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> strain. Journal of Dairy Research, 1991, 58, 469-475.	0.7	22