Tengling Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5735886/publications.pdf

Version: 2024-02-01

	40-	623734	839539
18	495	14	18
papers	citations	h-index	g-index
18	18	18	934
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Local and Global Structural Order on the Performance of Perylene Diimide Excimeric Solar Cells. ACS Applied Materials & Solar 1844-11857.	8.0	81
2	Improved Performance and Reproducibility of Perovskite Solar Cells by Well-Soluble Tris(pentafluorophenyl)borane as a p-Type Dopant. ACS Applied Materials & Diterfaces, 2017, 9, 17923-17931.	8.0	73
3	Enhanced Efficiency of Planar Heterojunction Perovskite Solar Cells by a Light Soaking Treatment on Tris(pentafluorophenyl)borane-Doped Poly(triarylamine) Solution. ACS Applied Materials & Discription (Interfaces, 2019, 11, 14004-14010.	8.0	44
4	Keggin-Type PMo $<$ sub $>11sub>V as a P-type Dopant for Enhancing the Efficiency and Reproducibility of Perovskite Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. Provided Home Perovskite Solar Cells. ACS Applied Materials & Solar Cells.$	8.0	37
5	Understanding the Light Soaking Effects in Inverted Organic Solar Cells Functionalized with Conjugated Macroelectrolyte Electronâ€Collecting Interlayers. Advanced Science, 2016, 3, 1500245.	11.2	35
6	Recent Progress in the Application of Polyoxometalates for Dyeâ€sensitized/Organic Solar Cells. Chinese Journal of Chemistry, 2016, 34, 747-756.	4.9	32
7	SiW ₁₂ –TiO ₂ Mesoporous Layer for Enhanced Electronâ€Extraction Efficiency and Conductivity in Perovskite Solar Cells. ChemSusChem, 2017, 10, 2218-2225.	6.8	30
8	Recent advances of non-fullerene organic electron transport materials in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20819-20848.	10.3	29
9	Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8687-8698.	8.0	26
10	Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. Journal of Materials Chemistry C, 2020, 8, 1686-1696.	5.5	19
11	Effects of solvent additives on the morphology and transport property of a perylene diimide dimer film in perovskite solar cells for improved performance. Solar Energy, 2020, 201, 927-934.	6.1	18
12	Recent advances of Cu-based hole transport materials and their interface engineering concerning different processing methods in perovskite solar cells. Journal of Energy Chemistry, 2021, 62, 459-476.	12.9	17
13	Multifunctional Electronic Skin Based on Perovskite Intermediate Gels. Advanced Electronic Materials, 2020, 6, 1901291.	5.1	16
14	Improved photovoltaic performance of mesoporous perovskite solar cells with hydrogenated TiO ₂ : prolonged photoelectron lifetime and high separation efficiency of photoinduced charge. RSC Advances, 2016, 6, 65125-65135.	3.6	15
15	4 <i>H</i> -1,2,6-Thiadiazine-containing donor–acceptor conjugated polymers: synthesis, optoelectronic characterization and their use in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 3658-3667.	5.5	10
16	Multifunctional Perylenediimide-Based Cathode Interfacial Materials for High-Performance Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 13657-13665.	5.1	8
17	Comparison Study of Wide Bandgap Polymer (PBDB-T) and Narrow Bandgap Polymer (PBDTTT-EFT) as Donor for Perylene Diimide Based Polymer Solar Cells. Frontiers in Chemistry, 2018, 6, 613.	3.6	4
18	Inâ€Situ Selfâ€Assembled ZnO Foam Based on Grapheneâ€Like Ultrathin Nanosheets. Advanced Materials Interfaces, 2022, 9, .	3.7	1