Svetlana N Yurgel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5735808/publications.pdf

Version: 2024-02-01

394421 330143 3,456 38 19 37 citations g-index h-index papers 39 39 39 3731 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 2020, 38, 685-688.	17.5	2,621
2	Dicarboxylate transport by rhizobia. FEMS Microbiology Reviews, 2004, 28, 489-501.	8.6	109
3	Dissecting Community Structure in Wild Blueberry Root and Soil Microbiome. Frontiers in Microbiology, 2018, 9, 1187.	3.5	56
4	Variation in Bacterial and Eukaryotic Communities Associated with Natural and Managed Wild Blueberry Habitats. Phytobiomes Journal, 2017, 1, 102-113.	2.7	47
5	Regulatory and DNA Repair Genes Contribute to the Desiccation Resistance of <i>Sinorhizobium meliloti</i> Rm1021. Applied and Environmental Microbiology, 2009, 75, 446-453.	3.1	45
6	Development of a Functional Genomics Platform for Sinorhizobium meliloti: Construction of an ORFeome. Applied and Environmental Microbiology, 2005, 71, 5858-5864.	3.1	40
7	A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. Journal of Biotechnology, 2009, 140, 45-50.	3.8	38
8	A directed-overflow and damage-control <i>N</i> -glycosidase in riboflavin biosynthesis. Biochemical Journal, 2015, 466, 137-145.	3.7	38
9	Microbial co-occurrence network analysis of soils receiving short- and long-term applications of alkaline treated biosolids. Science of the Total Environment, 2021, 751, 141687.	8.0	37
10	New Substrates for the Dicarboxylate Transport System of Sinorhizobium meliloti. Journal of Bacteriology, 2000, 182, 4216-4221.	2.2	34
11	Sinorhizobium meliloti dctA Mutants with Partial Ability To Transport Dicarboxylic Acids. Journal of Bacteriology, 2005, 187, 1161-1172.	2.2	34
12	Exploring the long-term effect of plastic on compost microbiome. PLoS ONE, 2019, 14, e0214376.	2.5	30
13	The eff-482 locus of Sinorhizobium meliloti CXM1-105 that influences symbiotic effectiveness consists of three genes encoding an endoglycanase, a transcriptional regulator and an adenylate cyclase. Molecular Genetics and Genomics, 1999, 261, 1032-1044.	2.4	29
14	Metagenomic Functional Shifts to Plant Induced Environmental Changes. Frontiers in Microbiology, 2019, 10, 1682.	3.5	28
15	Microbial Communities Associated with Storage Onion. Phytobiomes Journal, 2018, 2, 35-41.	2.7	27
16	Transcriptome Analysis of the Role of GlnD/GlnBK in Nitrogen Stress Adaptation by Sinorhizobium meliloti Rm1021. PLoS ONE, 2013, 8, e58028.	2.5	26
17	<i>Sinorhizobium meliloti</i> Flavin Secretion and Bacteria-Host Interaction: Role of the Bifunctional RibBA Protein. Molecular Plant-Microbe Interactions, 2014, 27, 437-445.	2.6	25
18	A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18958-18963.	7.1	24

#	Article	IF	CITATIONS
19	GlnB/GlnK PII Proteins and Regulation of the Sinorhizobium meliloti Rm1021 Nitrogen Stress Response and Symbiotic Function. Journal of Bacteriology, 2010, 192, 2473-2481.	2.2	20
20	Pleiotropic effects of mutations that alter the Sinorhizobium meliloti cytochrome c respiratory system. Microbiology (United Kingdom), 2007, 153, 399-410.	1.8	19
21	Members of a Novel Kinase Family (DUF1537) Can Recycle Toxic Intermediates into an Essential Metabolite. ACS Chemical Biology, 2016, 11, 2304-2311.	3.4	12
22	Combination of Ascophyllum nodosum Extract and Humic Acid Improve Early Growth and Reduces Post-Harvest Loss of Lettuce and Spinach. Agriculture (Switzerland), 2019, 9, 240.	3.1	12
23	<i>Sinorhizobium medicae</i> WSM419 Genes That Improve Symbiosis between <i>Sinorhizobium meliloti</i> Rm1021 and <i>Medicago truncatula</i> Jemalong A17 and in Other Symbiosis Systems. Applied and Environmental Microbiology, 2021, 87, e0300420.	3.1	12
24	Construction and Expression of Sugar Kinase Transcriptional Gene Fusions by Using the <i>Sinorhizobium meliloti</i> ORFeome. Applied and Environmental Microbiology, 2008, 74, 6756-6765.	3.1	11
25	Nitrogen Metabolism in <i>Sinorhizobium meliloti</i> –Alfalfa Symbiosis: Dissecting the Role of GlnD and PII Proteins. Molecular Plant-Microbe Interactions, 2012, 25, 355-362.	2.6	11
26	Truncated betB2-144 plays a critical role in Sinorhizobium meliloti Rm2011 osmoprotection and glycine-betaine catabolism. European Journal of Soil Biology, 2013, 54, 48-55.	3.2	10
27	Low Mannitol Concentrations in Arabidopsis thaliana Expressing Ectocarpus Genes Improve Salt Tolerance. Plants, 2020, 9, 1508.	3. 5	10
28	Directed Construction and Analysis of a Sinorhizobium meliloti pSymA Deletion Mutant Library. Applied and Environmental Microbiology, 2013, 79, 2081-2087.	3.1	9
29	Effect of Fungicide Application on Lowbush Blueberries Soil Microbiome. Microorganisms, 2021, 9, 1366.	3.6	8
30	A Characterization of a Cool-Climate Organic Vineyard's Microbiome. Phytobiomes Journal, 2022, 6, 69-82.	2.7	7
31	Specialization in a nitrogen-fixing symbiosis: proteome differences between Sinorhizobium medicae bacteria and bacteroids. Molecular Plant-Microbe Interactions, 2021, , MPMI07210180R.	2.6	6
32	Response of Plant-Associated Microbiome to Plant Root Colonization by Exogenous Bacterial Endophyte in Perennial Crops. Frontiers in Microbiology, 2022, 13, 863946.	3.5	6
33	Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti. Frontiers in Microbiology, 2016, 7, 1928.	3.5	4
34	A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 1971.	4.1	4
35	Microbial Consortium Associated with Crustacean Shells Composting. Microorganisms, 2022, 10, 1033.	3.6	3
36	The Sinorhizobium meliloti Nitrogen Stress Response Changes Radically in the Face of Concurrent Phosphate Stress. Frontiers in Microbiology, 2022, 13, 800146.	3.5	2

#	Article	IF	CITATIONS
37	Role of a Conserved Membrane Glycine Residue in a Dicarboxylate Transporter from Sinorhizobium meliloti. Journal of Bacteriology, 2007, 189, 2160-2163.	2.2	1
38	Estabelecimento de sistema bacteriano de expressão de peptÃdeos derivados da enzima vegetal RuBisCO. Brazilian Journal of Food Technology, 0, 22, .	0.8	1