Phillip T Hawkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5735754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Change in N-terminal pro-B-type natriuretic peptide at 1 year predicts mortality in wild-type transthyretin amyloid cardiomyopathy. Heart, 2022, 108, 474-478.	1.2	8
2	Clinical and Genetic Evaluation of People with or at Risk of Hereditary ATTR Amyloidosis: An Expert Opinion and Consensus on Best Practice in Ireland and the UK. Advances in Therapy, 2022, 39, 2292-2301.	1.3	11
3	Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nature Cell Biology, 2022, 24, 708-722.	4.6	18
4	Acyl chain selection couples the consumption and synthesis of phosphoinositides. EMBO Journal, 2022, 41, .	3.5	13
5	Reduction in CMR Derived Extracellular Volume With Patisiran Indicates Cardiac Amyloid Regression. JACC: Cardiovascular Imaging, 2021, 14, 189-199.	2.3	113
6	INSAID Variant Classification and Eurofever Criteria Guide Optimal Treatment Strategy in Patients with TRAPS: Data from the Eurofever Registry. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 783-791.e4.	2.0	16
7	PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in NaÃ⁻ve and Differentiated CD4+ T Cells. Frontiers in Immunology, 2021, 12, 631271.	2.2	12
8	Cardiac Magnetic Resonance–Derived Extracellular Volume Mapping for the Quantification of Hepatic and Splenic Amyloid. Circulation: Cardiovascular Imaging, 2021, 14, CIRCIMAGING121012506.	1.3	19
9	Clinical ApoAâ€IV amyloid is associated with fibrillogenic signal sequence. Journal of Pathology, 2021, 255, 311-318.	2.1	4
10	Urinary retinol binding protein predicts renal outcome in systemic immunoglobulin lightâ€chain (AL) amyloidosis. British Journal of Haematology, 2021, 194, 1016-1023.	1.2	3
11	Plasmin activity promotes amyloid deposition in a transgenic model of human transthyretin amyloidosis. Nature Communications, 2021, 12, 7112.	5.8	13
12	Disease progression in cardiac transthyretin amyloidosis is indicated by serial calculation of National Amyloidosis Centre transthyretin amyloidosis stage. ESC Heart Failure, 2020, 7, 3942-3949.	1.4	22
13	Gβγ is a direct regulator of endogenous p101/p110γ and p84/p110γ PI3Kγ complexes in mouse neutrophils. Science Signaling, 2020, 13, .	1.6	19
14	Diffusion Tensor Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation: Cardiovascular Imaging, 2020, 13, e009901.	1.3	26
15	The value of screening biopsies in lightâ€chain (AL) and transthyretin (ATTR) amyloidosis. European Journal of Haematology, 2020, 105, 352-356.	1.1	10
16	Diagnostic imaging of cardiac amyloidosis. Nature Reviews Cardiology, 2020, 17, 413-426.	6.1	84
17	Diagnostic amyloid proteomics: experience of the UK National Amyloidosis Centre. Clinical Chemistry and Laboratory Medicine, 2020, 58, 948-957.	1.4	20
18	Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis. European Heart Journal, 2020, 41, 1439-1447.	1.0	108

#	Article	IF	CITATIONS
19	Class IA PI3Ks regulate subcellular and functional dynamics of IDO1. EMBO Reports, 2020, 21, e49756.	2.0	24
20	Michael Wakelam (15 July 1955–31 March 2020). Biochemist, 2020, 42, 66-66.	0.2	0
21	The Parkinson's gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P3. Journal of Cell Science, 2019, 132, .	1.2	26
22	The UK National Amyloidosis Centre. European Heart Journal, 2019, 40, 1661-1664.	1.0	3
23	Natural History, Quality of Life, and Outcome in Cardiac Transthyretin Amyloidosis. Circulation, 2019, 140, 16-26.	1.6	288
24	Frontline Science: TNF-α and GM-CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K-γ, and neutrophil proinflammatory responses. Journal of Leukocyte Biology, 2019, 106, 815-822.	1.5	17
25	FRI0537â€LONG-TERM OUTCOMES AND TREATMENT EFFICACY IN PATIENTS WITH TNF RECEPTOR-ASSOCIATED AUTOINFLAMMATORY SYNDROME (TRAPS): A SERIES OF 290 CASES FROM THE EUROFEVER/EUROTRAPS INTERNATIONAL REGISTRY. , 2019, , .	D	0
26	Analysis of the <i>TTR</i> gene in the investigation of amyloidosis: A 25-year single UK center experience. Human Mutation, 2019, 40, 90-96.	1.1	29
27	Native T1 and Extracellular Volume inÂTransthyretin Amyloidosis. JACC: Cardiovascular Imaging, 2019, 12, 810-819.	2.3	172
28	Cardiac Structural and Functional Consequences of Amyloid Deposition byÂCardiac Magnetic Resonance andÂEchocardiography and TheirÂPrognosticÂRoles. JACC: Cardiovascular Imaging, 2019, 12, 823-833.	2.3	113
29	How is the acyl chain composition of phosphoinositides created and does it matter?. Biochemical Society Transactions, 2019, 47, 1291-1305.	1.6	42
30	Repeat doses of antibody to serum amyloid P component clear amyloid deposits in patients with systemic amyloidosis. Science Translational Medicine, 2018, 10, .	5.8	94
31	Cardiac amyloidosis. Clinical Medicine, 2018, 18, s30-s35.	0.8	135
32	A new staging system for cardiac transthyretin amyloidosis. European Heart Journal, 2018, 39, 2799-2806.	1.0	396
33	Extracellular volume with bolusâ€only technique in amyloidosis patients: Diagnostic accuracy, correlation with other clinical cardiac measures, and ability to track changes in amyloid load over time. Journal of Magnetic Resonance Imaging, 2018, 47, 1677-1684.	1.9	7
34	Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12176-12181.	3.3	40
35	Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. Genome Biology, 2018, 19, 126.	3.8	29
36	Plasminogen activation triggers transthyretin amyloidogenesis in vitro. Journal of Biological Chemistry, 2018, 293, 14192-14199.	1.6	68

#	Article	IF	CITATIONS
37	Myocardial Edema and Prognosis inÂAmyloidosis. Journal of the American College of Cardiology, 2018, 71, 2919-2931.	1.2	145
38	Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight, 2018, 3, .	2.3	90
39	cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. Journal of Immunology, 2017, 198, 1285-1296.	0.4	46
40	Renal Amyloidosis Associated With 5 NovelÂVariants in the Fibrinogen A Alpha Chain Protein. Kidney International Reports, 2017, 2, 461-469.	0.4	25
41	Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. European Heart Journal, 2017, 38, 1905-1908.	1.0	144
42	Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. European Heart Journal Cardiovascular Imaging, 2017, 18, 1344-1350.	0.5	124
43	PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K. Molecular Cell, 2017, 68, 566-580.e10.	4.5	149
44	SGK1 Is a Critical Component of an AKT-Independent Pathway Essential for PI3K-Mediated Tumor Development and Maintenance. Cancer Research, 2017, 77, 6914-6926.	0.4	32
45	Increasing the accuracy of proteomic typing by decellularisation of amyloid tissue biopsies. Journal of Proteomics, 2017, 165, 113-118.	1.2	14
46	Magnetic Resonance in TransthyretinÂCardiac Amyloidosis. Journal of the American College of Cardiology, 2017, 70, 466-477.	1.2	290
47	Safety and efficacy of empirical interleukin-1 inhibition using anakinra in AA amyloidosis of uncertain aetiology. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 189-193.	1.4	17
48	024â€Spectrum and significance of CMR findings in cardiac transthyretin amyloidosis. Heart, 2017, 103, A20-A21.	1.2	0
49	028â€Routine identification of hypoperfusion in cardiac amyloidosis by myocardial blood flow mapping. Heart, 2017, 103, A24-A24.	1.2	3
50	008â€Demonstration of cardiac AL amyloidosis regression after succesful chemotherapy. a CMR study. Heart, 2017, 103, A7.1-A7.	1.2	0
51	Changing epidemiology of AA amyloidosis: clinical observations over 25 years at a single national referral centre. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 162-166.	1.4	61
52	A case report in cardiovascular magnetic resonance: the contrast agent matters in amyloid. BMC Medical Imaging, 2017, 17, 3.	1.4	9
53	Cardiac computed tomography for the detection of cardiac amyloidosis. Journal of Cardiovascular Computed Tomography, 2017, 11, 155-156.	0.7	3
54	In-depth PtdIns(3,4,5)P3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Advances, 2017, 1, 918-932.	2.5	34

#	Article	IF	CITATIONS
55	Class (I) Phosphoinositide 3-Kinases in the Tumor Microenvironment. Cancers, 2017, 9, 24.	1.7	31
56	Response to Letters Regarding Article, "Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis― Circulation, 2016, 133, e450-1.	1.6	4
57	Investigating the effect of arachidonate supplementation on the phosphoinositide content of MCF10a breast epithelial cells. Advances in Biological Regulation, 2016, 62, 18-24.	1.4	20
58	Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation, 2016, 133, 2404-2412.	1.6	1,335
59	Emerging evidence of signalling roles for PI(3,4) <i>P</i> 2 in Class I and II PI3K-regulated pathways. Biochemical Society Transactions, 2016, 44, 307-314.	1.6	96
60	Staging Cardiac Amyloidosis With CMR. JACC: Cardiovascular Imaging, 2016, 9, 1278-1279.	2.3	10
61	Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8 + T Cells. Immunity, 2016, 45, 685-700.	6.6	68
62	Occult Transthyretin Cardiac Amyloid in Severe Calcific Aortic Stenosis. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	210
63	Diagnosis, pathogenesis and outcome in leucocyte chemotactic factor 2 (ALECT2) amyloidosis. Nephrology Dialysis Transplantation, 2016, 33, gfw375.	0.4	18
64	In B cells, phosphatidylinositol 5-phosphate 4-kinase–α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10571-10576.	3.3	21
65	Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kβ in myeloid cells. Science Signaling, 2016, 9, ra82.	1.6	53
66	The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Molecular and Cellular Biology, 2016, 36, 1464-1479.	1.1	22
67	Localizing the lipid products of PI3KÎ ³ in neutrophils. Advances in Biological Regulation, 2016, 60, 36-45.	1.4	11
68	The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nature Immunology, 2016, 17, 104-112.	7.0	192
69	Functional drug screening reveals anticonvulsants as enhancers of mTORâ€independent autophagic killing of <i>Mycobacterium tuberculosis</i> through inositol depletion. EMBO Molecular Medicine, 2015, 7, 127-139.	3.3	137
70	A novel mechanoâ€enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Molecular Medicine, 2015, 7, 1337-1349.	3.3	109
71	Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop. Nucleic Acids Research, 2015, 43, gkv1015.	6.5	20
72	A study of implanted cardiac rhythm recorders in advanced cardiac AL amyloidosis. European Heart Journal, 2015, 36, 1098-1105.	1.0	129

#	Article	IF	CITATIONS
73	Evolving landscape in the management of transthyretin amyloidosis. Annals of Medicine, 2015, 47, 625-638.	1.5	181
74	The regulatory subunits of PI3K \hat{I}^3 control distinct neutrophil responses. Science Signaling, 2015, 8, ra8.	1.6	42
75	Amyloid cardiomyopathy associated with a novel apolipoprotein A–I Q172P variant. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2015, 22, 252-253.	1.4	8
76	A comparison of immunohistochemistry and mass spectrometry for determining the amyloid fibril protein from formalin-fixed biopsy tissue. Journal of Clinical Pathology, 2015, 68, 314-317.	1.0	95
77	Differential Myocyte Responses in Patients with Cardiac Transthyretin Amyloidosis and Light-Chain Amyloidosis: A Cardiac MR Imaging Study. Radiology, 2015, 277, 388-397.	3.6	146
78	Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation, 2015, 132, 1570-1579.	1.6	442
79	Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 155-160.	3.3	61
80	The Phosphoinositide 3â€Kinase Isoform PI3Kβ Regulates Osteoclastâ€Mediated Bone Resorption in Humans and Mice. Arthritis and Rheumatology, 2014, 66, 2210-2221.	2.9	29
81	<i>Dictyostelium</i> uses etherâ€linked inositol phospholipids for intracellular signalling. EMBO Journal, 2014, 33, 2188-2200.	3.5	53
82	The hexosamine biosynthesis pathway and Oâ€Glc <scp>NA</scp> cylation maintain insulinâ€stimulated <scp>PI</scp> 3Kâ€ <scp>PKB</scp> phosphorylation and tumour cell growth after shortâ€term glucose deprivation. FEBS Journal, 2014, 281, 3591-3608.	2.2	26
83	A new approach to measuring phosphoinositides in cells by mass spectrometry. Advances in Biological Regulation, 2014, 54, 131-141.	1.4	70
84	P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. Journal of Cell Science, 2014, 127, 2589-600.	1.2	50
85	Phosphoinositide 3-Kinase δ Gene Mutation Predisposes to Respiratory Infection and Airway Damage. Science, 2013, 342, 866-871.	6.0	541
86	Pathogenetic mechanisms of amyloid A amyloidosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16115-16120.	3.3	79
87	Two distinct functions for PI3-kinases in macropinocytosis. Journal of Cell Science, 2013, 126, 4296-307.	1.2	83
88	3D time series analysis of cell shape using Laplacian approaches. BMC Bioinformatics, 2013, 14, 296.	1.2	19
89	Structure, Folding Dynamics, and Amyloidogenesis of D76N β2-Microglobulin. Journal of Biological Chemistry, 2013, 288, 30917-30930.	1.6	80
90	More Paths to PI3Kγ. PLoS Biology, 2013, 11, e1001594.	2.6	4

#	Article	IF	CITATIONS
91	Lysophosphatidylinositol-Acyltransferase-1 (LPIAT1) Is Required to Maintain Physiological Levels of PtdIns and PtdInsP2 in the Mouse. PLoS ONE, 2013, 8, e58425.	1.1	65
92	Phosphoinositide 3-OH Kinase Regulates Integrin-Dependent Processes in Neutrophils by Signaling through Its Effector ARAP3. Journal of Immunology, 2013, 190, 381-391.	0.4	19
93	Signaling via Class IA Phosphoinositide 3-Kinases (PI3K) in Human, Breast-Derived Cell Lines. PLoS ONE, 2013, 8, e75045.	1.1	12
94	Fast random walker for neutrophil cell segmentation in 3D. , 2012, , .		3
95	GPCR activation of Ras and PI3KÎ ³ in neutrophils depends on PLCÎ ² 2/Î ² 3 and the RasGEF RasGRP4. EMBO Journal, 2012, 31, 3118-3129.	3.5	58
96	PI3K signalling: the path to discovery and understanding. Nature Reviews Molecular Cell Biology, 2012, 13, 195-203.	16.1	799
97	Activation of the neutrophil NADPH oxidase by <i>Aspergillus fumigatus</i> . Annals of the New York Academy of Sciences, 2012, 1273, 68-73.	1.8	18
98	Amyloid Typing: Experience from a Large Referral Centre. , 2012, , 231-238.		10
99	Functional Redundancy of Class I Phosphoinositide 3-Kinase (PI3K) Isoforms in Signaling Growth Factor-Mediated Human Neutrophil Survival. PLoS ONE, 2012, 7, e45933.	1.1	45
100	Structure of Lipid Kinase p110î²/p85î² Elucidates an Unusual SH2-Domain-Mediated Inhibitory Mechanism. Molecular Cell, 2011, 41, 567-578.	4.5	161
101	PI3KÎ ² Plays a Critical Role in Neutrophil Activation by Immune Complexes. Science Signaling, 2011, 4, ra23.	1.6	130
102	SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor. PLoS ONE, 2011, 6, e21205.	1.1	226
103	The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood, 2011, 118, 1087-1098.	0.6	54
104	Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nature Methods, 2011, 8, 267-272.	9.0	246
105	Class IA Phosphoinositide 3-Kinase β and δ Regulate Neutrophil Oxidase Activation in Response to <i>Aspergillus fumigatus</i> Hyphae. Journal of Immunology, 2011, 186, 2978-2989.	0.4	64
106	Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase. Blood, 2010, 116, 6027-6036.	0.6	40
107	PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils. Blood, 2010, 116, 4978-4989.	0.6	55
108	Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Organic and Biomolecular Chemistry, 2010, 8, 66-76.	1.5	56

#	Article	IF	CITATIONS
109	PI3K Signaling in Neutrophils. Current Topics in Microbiology and Immunology, 2010, 346, 183-202.	0.7	84
110	Modulation of Monomeric G Proteins by Phosphoinositides. , 2010, , 1131-1139.		1
111	Diagnosis, Pathogenesis, Treatment, and Prognosis of Hereditary Fibrinogen Aα-Chain Amyloidosis. Journal of the American Society of Nephrology: JASN, 2009, 20, 444-451.	3.0	145
112	CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood, 2008, 112, 5202-5211.	0.6	81
113	Moving towards a Better Understanding of Chemotaxis. Current Biology, 2008, 18, R485-R494.	1.8	154
114	PI3K Class IB Pathway in Neutrophils. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, cm3.	4.1	49
115	Quantitative Measurement of Phosphatidylinositol 3,4,5-trisphosphate. Methods in Enzymology, 2007, 434, 117-130.	0.4	33
116	Use of the GRP1 PH domain as a tool to measure the relative levels of PtdIns(3,4,5)P3 through a protein-lipid overlay approach. Journal of Lipid Research, 2007, 48, 726-732.	2.0	27
117	PI3KÎ ³ Is a Key Regulator of Inflammatory Responses and Cardiovascular Homeostasis. Science, 2007, 318, 64-66.	6.0	68
118	PI3K Class IB Pathway. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, cm2.	4.1	36
119	PI(3)KÎ ³ has an important context-dependent role in neutrophil chemokinesis. Nature Cell Biology, 2007, 9, 86-91.	4.6	233
120	Structural determinants of LL5 \hat{I}^2 subcellular localisation and association with filamin C. Cellular Signalling, 2007, 19, 817-824.	1.7	12
121	The role of PI3Ks in the regulation of the neutrophil NADPH oxidase. Biochemical Society Symposia, 2007, 74, 59.	2.7	30
122	The role of PI3Ks in the regulation of the neutrophil NADPH oxidase. Biochemical Society Symposia, 2007, 74, 59-67.	2.7	25
123	Signalling through Class I PI3Ks in mammalian cells. Biochemical Society Transactions, 2006, 34, 647-662.	1.6	502
124	Gβγs and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils. Nature Cell Biology, 2006, 8, 1303-1309.	4.6	167
125	PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO Journal, 2006, 25, 4468-4478.	3.5	116
126	Neutrophils from p40phoxâ^'/â^' mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. Journal of Experimental Medicine, 2006, 203, 1927-1937.	4.2	162

#	Article	IF	CITATIONS
127	Purification of ARAP3 and Characterization of GAP Activities. Methods in Enzymology, 2006, 406, 91-103.	0.4	8
128	ARAP3 is essential for formation of lamellipodia after growth factor stimulation. Journal of Cell Science, 2006, 119, 425-432.	1.2	55
129	RhoG Regulates the Neutrophil NADPH Oxidase. Journal of Immunology, 2006, 176, 5314-5320.	0.4	37
130	Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood, 2005, 106, 1432-1440.	0.6	274
131	p84, a New Gβγ-Activated Regulatory Subunit of the Type IB Phosphoinositide 3-Kinase p110γ. Current Biology, 2005, 15, 566-570.	1.8	157
132	P-Rex1 Regulates Neutrophil Function. Current Biology, 2005, 15, 1867-1873.	1.8	161
133	Regulation of P-Rex1 by Phosphatidylinositol (3,4,5)-Trisphosphate and GÎ ² Î ³ Subunits. Journal of Biological Chemistry, 2005, 280, 4166-4173.	1.6	102
134	Phosphoinositide 3-kinases as drug targets in cancer. Current Opinion in Pharmacology, 2005, 5, 357-365.	1.7	100
135	The Molecular Basis of the Differential Subcellular Localization of FYVE Domains. Journal of Biological Chemistry, 2004, 279, 53818-53827.	1.6	55
136	ARAP3 Is a PI3K- and Rap-Regulated GAP for RhoA. Current Biology, 2004, 14, 1380-1384.	1.8	119
137	The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. Advances in Enzyme Regulation, 2004, 44, 279-298.	2.9	47
138	Response to anakinra in a de novo case of neonatal-onset multisystem inflammatory disease. Arthritis and Rheumatism, 2004, 50, 2708-2709.	6.7	54
139	P-Rex2, a new guanine-nucleotide exchange factor for Rac. FEBS Letters, 2004, 572, 172-176.	1.3	94
140	Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Letters, 2003, 546, 93-97.	1.3	279
141	LL5β Is a Phosphatidylinositol (3,4,5)-Trisphosphate Sensor That Can Bind the Cytoskeletal Adaptor, γ-Filamin. Journal of Biological Chemistry, 2003, 278, 1328-1335.	1.6	43
142	Modulation of Monomeric G Proteins by Phosphoinositides. , 2003, , 203-207.		0
143	Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein βγ subunits. Biochemical Journal, 2002, 362, 725.	1.7	19
144	Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein βγ subunits. Biochemical Journal, 2002, 362, 725-731.	1.7	29

#	Article	IF	CITATIONS
145	P-Rex1, a PtdIns(3,4,5)P3- and Gî²Î³-Regulated Guanine-Nucleotide Exchange Factor for Rac. Cell, 2002, 108, 809-821.	13.5	487
146	Identification of ARAP3, a Novel PI3K Effector Regulating Both Arf and Rho GTPases, by Selective Capture on Phosphoinositide Affinity Matrices. Molecular Cell, 2002, 9, 95-108.	4.5	286
147	Activation of Phosphoinositide 3-Kinase \hat{I}^3 by Ras. Current Biology, 2002, 12, 1068-1075.	1.8	110
148	Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Current Opinion in Cell Biology, 2002, 14, 203-213.	2.6	239
149	The Crystal Structure of the PX Domain from p40phox Bound to Phosphatidylinositol 3-Phosphate. Molecular Cell, 2001, 8, 829-839.	4.5	263
150	Synthesis and biological evaluation of a PtdIns(3,4,5)P3 affinity matrix. Chemical Communications, 2001, , 645-646.	2.2	20
151	PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biology, 2001, 3, 679-682.	4.6	389
152	Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Current Biology, 2001, 11, 1631-1635.	1.8	162
153	Src Family Kinases Mediate Receptor-stimulated, Phosphoinositide 3-Kinase-dependent, Tyrosine Phosphorylation of Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides-1 in Endothelial and B Cell Lines. Journal of Biological Chemistry, 2001, 276, 42767-42773.	1.6	32
154	Gi-mediated translocation of GLUT4 is independent of p85/p110α and p110Î ³ phosphoinositide 3-kinases but might involve the activation of Akt kinase. Biochemical Journal, 2000, 345, 543.	1.7	11
155	Gi-mediated translocation of GLUT4 is independent of p85/p110α and p110γ phosphoinositide 3-kinases but might involve the activation of Akt kinase. Biochemical Journal, 2000, 345, 543-555.	1.7	25
156	Moving in mysterious ways. Nature, 2000, 404, 135-137.	13.7	16
157	Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)KÎ ³ . Nature, 2000, 406, 897-902.	13.7	102
158	DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Current Biology, 2000, 10, 1403-1412.	1.8	43
159	Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine. Molecular Cell, 2000, 6, 909-919.	4.5	1,102
160	Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase γ. Cell, 2000, 103, 931-944.	13.5	574
161	Characterizing the Interactions between the Two Subunits of the p101/p110γ Phosphoinositide 3-Kinase and Their Role in the Activation of This Enzyme by Gβγ Subunits. Journal of Biological Chemistry, 1999, 274, 17152-17158.	1.6	78
162	General synthesis of 3-phosphorylated myo-inositol phospholipids and derivatives. Journal of the Chemical Society Perkin Transactions 1, 1999, , 923-936.	0.9	43

#	Article	IF	CITATIONS
163	Synergistic activation of JNK/SAPK by interleukin-1 and platelet-derived growth factor is independent of Rac and Cdc42. Biochemical Journal, 1999, 338, 387-392.	1.7	35
164	Synergistic activation of JNK/SAPK by interleukin-1 and platelet-derived growth factor is independent of Rac and Cdc42. Biochemical Journal, 1999, 338, 387.	1.7	12
165	Priming of human neutrophil superoxide generation by tumour necrosis factor-α is signalled by enhanced phosphatidylinositol 3,4,5-trisphosphate but not inositol 1,4,5-trisphosphate accumulation. FEBS Letters, 1998, 439, 147-151.	1.3	41
166	Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Current Biology, 1998, 8, 684-691.	1.8	334
167	Protein Kinase B Kinases That Mediate Phosphatidylinositol 3,4,5-Trisphosphate-Dependent Activation of Protein Kinase B. Science, 1998, 279, 710-714.	6.0	992
168	Protein Kinase B and Rac Are Activated in Parallel within a Phosphatidylinositide 3OH-kinase-controlled Signaling Pathway. Journal of Biological Chemistry, 1998, 273, 11248-11256.	1.6	83
169	Signalling via phosphoinositide 30H kinases. Biochemical Society Transactions, 1997, 25, 1147-1151.	1.6	37
170	168 Structural analysis of a novel isoform of phosphoinositide 30H-kinase. Biochemical Society Transactions, 1997, 25, S604-S604.	1.6	3
171	Synthesis of dipalmitoyl phosphatidylinositol 3,4-bis(phosphate) and 3,4,5-tris(phosphate) and their enantiomers. Chemical Communications, 1997, , 1635-1636.	2.2	10
172	Dual Role of Phosphatidylinositol-3,4,5-trisphosphate in the Activation of Protein Kinase B. Science, 1997, 277, 567-570.	6.0	1,131
173	The Gβγ Sensitivity of a PI3K Is Dependent upon a Tightly Associated Adaptor, p101. Cell, 1997, 89, 105-114.	13.5	542
174	Phosphatidylinositol 3-kinase-Â activates Bruton's tyrosine kinase in concert with Src family kinases. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13820-13825.	3.3	198
175	Insulin and ATP stimulate actin polymerization in U937 cells by a wortmannin-sensitive mechanism. FEBS Letters, 1996, 392, 66-70.	1.3	10
176	PDGF stimulates an increase in GTP–Rac via activation of phosphoinositide 3-kinase. Current Biology, 1995, 5, 393-403.	1.8	531
177	Characterization of a phosphatidylinositol-specific phosphoinositide 3-kinase from mammalian cells. Current Biology, 1994, 4, 203-214.	1.8	138
178	Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Current Biology, 1994, 4, 385-393.	1.8	447
179	A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell, 1994, 77, 83-93.	13.5	611
180	Stimulation of phosphatidylinositol-3-kinase by insulin-like growth factor 1 and other agonists. Biochemical Society Transactions, 1992, 20, 140S-140S.	1.6	2

#	Article	IF	CITATIONS
181	Metabolism of myo-inositol pentakisphosphates in mammalian brain. Biochemical Society Transactions, 1992, 20, 149S-149S.	1.6	2
182	Platelet-derived growth factor stimulates synthesis of Ptdlns(3,4,5)P3 by activating a Ptdlns(4,5)P2 3-OH kinase. Nature, 1992, 358, 157-159.	13.7	253
183	Inositol hexakisphosphate-membranes interactions: the role of metal ions. Biochemical Society Transactions, 1991, 19, 152S-152S.	1.6	4
184	[13] Inositol phospholipids and phosphates for investigation of intact cell phospholipase C substrates and products. Methods in Enzymology, 1991, 197, 149-158.	0.4	5
185	Phosphatidylinositol-3-phosphate and inositol phosphates in mitogenesis. Biochemical Society Transactions, 1990, 18, 450-451.	1.6	0
186	Inositol hexakisphosphate biosynthesis in mammalian brain: identification of a novel inositol pentakisphosphate kinase. Biochemical Society Transactions, 1990, 18, 460-461.	1.6	5
187	Identification of a novel inositol phosphate recognition site: Specific [3H]inositol hexakisphosphate binding to brain regions and cerebellar membranes. Biochemical and Biophysical Research Communications, 1990, 167, 819-827.	1.0	30
188	The metabolism and functions of inositol pentakisphosphate and inositol hexakisphosphate. Biochemical Society Transactions, 1989, 17, 3-5.	1.6	28
189	Is Vasopressin-Stimulated Inositol Lipid Breakdown Intrinsic to the Mechanism of Ca2+-Mobilization at V1 Vasopressin Receptors?. Progress in Brain Research, 1983, 60, 405-411.	0.9	14
190	Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochemical Journal, 1983, 212, 733-747.	1.7	540