
Jaroslaw Marszalek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5735310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	During FeS cluster biogenesis, ferredoxin and frataxin use overlapping binding sites on yeast cysteine desulfurase Nfs1. Journal of Biological Chemistry, 2022, 298, 101570.	1.6	2
2	Two-step mechanism of J-domain action in driving Hsp70 function. PLoS Computational Biology, 2020, 16, e1007913.	1.5	18
3	Biochemical Convergence of Mitochondrial Hsp70 System Specialized in Iron–Sulfur Cluster Biogenesis. International Journal of Molecular Sciences, 2020, 21, 3326.	1.8	13
4	Structure and evolution of the 4-helix bundle domain of Zuotin, a J-domain protein co-chaperone of Hsp70. PLoS ONE, 2019, 14, e0217098.	1.1	8
5	How Do J-Proteins Get Hsp70 to Do So Many Different Things?. Trends in Biochemical Sciences, 2017, 42, 355-368.	3.7	152
6	Fe–S Cluster Hsp70 Chaperones: The ATPase Cycle and Protein Interactions. Methods in Enzymology, 2017, 595, 161-184.	0.4	16
7	Iron–Sulfur Cluster Biogenesis Chaperones: Evidence for Emergence of Mutational Robustness of a Highly Specific Protein–Protein Interaction. Molecular Biology and Evolution, 2016, 33, 643-656.	3.5	19
8	Protection of scaffold protein Isu from degradation by the Lon protease Pim1 as a component of Fe–S cluster biogenesis regulation. Molecular Biology of the Cell, 2016, 27, 1060-1068.	0.9	22
9	Overlapping Binding Sites of the Frataxin Homologue Assembly Factor and the Heat Shock Protein 70 Transfer Factor on the Isu Iron-Sulfur Cluster Scaffold Protein. Journal of Biological Chemistry, 2014, 289, 30268-30278.	1.6	38
10	Yeast Hsp70 and J-protein Chaperones: Function and Interaction Network. , 2014, , 53-82.		0
11	Nucleoid localization of Hsp40 Mdj1 is important for its function in maintenance of mitochondrial DNA. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2233-2243.	1.9	12
12	Binding of the Chaperone Jac1 Protein and Cysteine Desulfurase Nfs1 to the Iron-Sulfur Cluster Scaffold Isu Protein Is Mutually Exclusive. Journal of Biological Chemistry, 2013, 288, 29134-29142.	1.6	50
13	Sequential Duplications of an Ancient Member of the DnaJ-Family Expanded the Functional Chaperone Network in the Eukaryotic Cytosol. Molecular Biology and Evolution, 2013, 30, 985-998.	3.5	38
14	The Complex Evolutionary Dynamics of Hsp70s: A Genomic and Functional Perspective. Genome Biology and Evolution, 2013, 5, 2460-2477.	1.1	44
15	Cysteine desulfurase Nfs1 and Pim1 protease control levels of Isu, the Fe-S cluster biogenesis scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10370-10375.	3.3	48
16	Interaction of J-Protein Co-Chaperone Jac1 with Fe–S Scaffold Isu Is Indispensable In Vivo and Conserved in Evolution. Journal of Molecular Biology, 2012, 417, 1-12.	2.0	59
17	Ancient Gene Duplication Provided a Key Molecular Step for Anaerobic Growth of Baker's Yeast. Molecular Biology and Evolution, 2011, 28, 2005-2017.	3.5	7
18	Coâ€evolutionâ€driven switch of Jâ€protein specificity towards an Hsp70 partner. EMBO Reports, 2010, 11, 360-365.	2.0	41

JAROSLAW MARSZALEK

#	Article	IF	CITATIONS
19	Maintenance and stabilization of mtDNA can be facilitated by the DNA-binding activity of Ilv5p. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 107-117.	1.9	16
20	Evolution of Mitochondrial Chaperones Utilized in Fe-S Cluster Biogenesis. Current Biology, 2006, 16, 1660-1665.	1.8	94
21	Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 141-151.	1.9	42
22	Characterization of the Interaction between the J-protein Jac1p and the Scaffold for Fe-S Cluster Biogenesis, Isu1p. Journal of Biological Chemistry, 2006, 281, 14580-14587.	1.6	50
23	The Hsp70 Chaperone Ssq1p Is Dispensable for Iron-Sulfur Cluster Formation on the Scaffold Protein Isu1p*. Journal of Biological Chemistry, 2006, 281, 7801-7808.	1.6	54
24	Compensation for a Defective Interaction of the Hsp70 Ssq1 with the Mitochondrial Fe-S Cluster Scaffold Isu. Journal of Biological Chemistry, 2005, 280, 28966-28972.	1.6	29
25	An Essential Connection: Link between Hsp70's Domains At Last. Molecular Cell, 2005, 20, 493-494.	4.5	2
26	Sequence-specific Interaction between Mitochondrial Fe-S Scaffold Protein Isu and Hsp70 Ssq1 Is Essential for Their in Vivo Function. Journal of Biological Chemistry, 2004, 279, 29167-29174.	1.6	90
27	Regulated Cycling of Mitochondrial Hsp70 at the Protein Import Channel. Science, 2003, 300, 139-141.	6.0	161
28	Ssq1, a Mitochondrial Hsp70 Involved in Iron-Sulfur (Fe/S) Center Biogenesis. Journal of Biological Chemistry, 2003, 278, 29719-29727.	1.6	122
29	A Bichaperone (Hsp70-Hsp78) System Restores Mitochondrial DNA Synthesis following Thermal Inactivation of Mip1p Polymerase. Journal of Biological Chemistry, 2002, 277, 27801-27808.	1.6	56
30	Fellowship fund would help eastern Europe to retain its young talent. Nature, 2001, 410, 299-299.	13.7	0
31	Role of the Mitochondrial Hsp70s, Ssc1 and Ssq1, in the Maturation of Yfh1. Molecular and Cellular Biology, 2000, 20, 3677-3684.	1.1	78
32	Role of the Mitochondrial Hsp70s, Ssc1 and Ssq1, in the Maturation of Yfh1. Molecular and Cellular Biology, 2000, 20, 3677-3684.	1.1	3
33	Dual Role of the Mitochondrial Chaperone Mdj1p in Inheritance of Mitochondrial DNA in Yeast. Molecular and Cellular Biology, 1999, 19, 8201-8210.	1.1	37
34	Role of adenine nucleotides, molecular chaperones and chaperonins in stabilization of DnaA initiator protein of Escherichia coli. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1442, 39-48.	2.4	9
35	Domains of DnaA Protein Involved in Interaction with DnaB Protein, and in Unwinding the Escherichia coli Chromosomal Origin. Journal of Biological Chemistry, 1996, 271, 18535-18542.	1.6	60
36	The Requirement for Molecular Chaperones in λDNA Replication Is Reduced by the Mutation π in λP Gene, Which Weakens the Interaction between λP Protein and DnaB Helicase. Journal of Biological Chemistry, 1995, 270, 9792-9799.	1.6	25

#	Article	IF	CITATIONS
37	Regulatory properties of AMP deaminases from rat tissues. International Journal of Biochemistry & Cell Biology, 1991, 23, 1155-1159.	0.8	13
38	Comparison of kinetic and regulatory properties of high S0.5 form of AMP deaminase from chicken and pigeon liver with AMP deaminase from rat and ox liver. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 94, 555-560.	0.2	1
39	The role of GTP in the regulation of two forms of AMP deaminase from chicken kidney. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 88, 1077-1082.	0.2	1
40	AMP deaminases of rat small intestine. Biochimica Et Biophysica Acta - General Subjects, 1986, 880, 123-130.	1.1	11
41	Two forms of AMP deaminase from the lizard (Lacerta agilis) liver. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 83, 169-171.	0.2	1