Jeff Errington

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5735221/jeff-errington-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21 O papers	21,397	77	143
	citations	h-index	g-index
223	23,762 ext. citations	10.5	7.01
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
210	A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. <i>Nucleic Acids Research</i> , 2021 , 49, 5553-5567	20.1	1
209	CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. <i>Molecular Cell</i> , 2021 , 81, 3623-3636.e6	17.6	4
208	Regulation of peptidoglycan synthesis and remodelling. <i>Nature Reviews Microbiology</i> , 2020 , 18, 446-46	0 22.2	119
207	Microbe Profile: : model organism for cellular development, and industrial workhorse. <i>Microbiology</i> (United Kingdom), 2020 , 166, 425-427	2.9	18
206	A Small Molecule Inhibitor of CTP Synthetase Identified by Differential Activity on a Mutant Deficient in Class A Penicillin-Binding Proteins. <i>Frontiers in Microbiology</i> , 2020 , 11, 2001	5.7	O
205	Antibiotic tolerance. PLoS Pathogens, 2020, 16, e1008892	7.6	10
204	Cohesion of Sister Chromosome Termini during the Early Stages of Sporulation in Bacillus subtilis. <i>Journal of Bacteriology</i> , 2020 , 202,	3.5	3
203	Geometric principles underlying the proliferation of a model cell system. <i>Nature Communications</i> , 2020 , 11, 4149	17.4	7
202	Cell Wall Deficiency as a Coping Strategy for Stress. <i>Trends in Microbiology</i> , 2019 , 27, 1025-1033	12.4	22
201	Crucial role for central carbon metabolism in the bacterial L-form switch and killing by Elactam antibiotics. <i>Nature Microbiology</i> , 2019 , 4, 1716-1726	26.6	23
200	Microfluidic time-lapse analysis and reevaluation of the Bacillus subtilis cell cycle. <i>MicrobiologyOpen</i> , 2019 , 8, e876	3.4	6
199	Possible role of L-form switching in recurrent urinary tract infection. <i>Nature Communications</i> , 2019 , 10, 4379	17.4	27
198	Lysozyme Counteracts Lactam Antibiotics by Promoting the Emergence of L-Form Bacteria. <i>Cell</i> , 2018 , 172, 1038-1049.e10	56.2	47
197	Mode of Action and Heterologous Expression of the Natural Product Antibiotic Vancoresmycin. <i>ACS Chemical Biology</i> , 2018 , 13, 207-214	4.9	30
196	Type II Toxin-Antitoxin Systems and Persister Cells. <i>MBio</i> , 2018 , 9,	7.8	20
195	Mode of Action of Kanglemycin A, an Ansamycin Natural Product that Is Active against Rifampicin-Resistant Mycobacterium tuberculosis. <i>Molecular Cell</i> , 2018 , 72, 263-274.e5	17.6	33
194	RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. <i>Nature Microbiology</i> , 2017 , 2, 16253	26.6	95

(2015-2017)

193	Structural Reassignment and Absolute Stereochemistry of Madurastatin C1 (MBJ-0034) and the Related Aziridine Siderophores: Madurastatins A1, B1, and MBJ-0035. <i>Journal of Natural Products</i> , 2017 , 80, 1558-1562	4.9	13	
192	Cell wall-deficient, L-form bacteria in the 21st century: a personal perspective. <i>Biochemical Society Transactions</i> , 2017 , 45, 287-295	5.1	18	
191	Cell Cycle Machinery in Bacillus subtilis. Sub-Cellular Biochemistry, 2017, 84, 67-101	5.5	34	
190	Designer chemistry. Environmental Microbiology Reports, 2017, 9, 36-37	3.7		
189	Production of 17-O-demethyl-geldanamycin, a cytotoxic ansamycin polyketide, by Streptomyces hygroscopicus DEM20745. <i>Natural Product Research</i> , 2017 , 31, 1895-1900	2.3	4	
188	Screening and purification of natural products from actinomycetes that affect the cell shape of fission yeast. <i>Journal of Cell Science</i> , 2017 , 130, 3173-3185	5.3	6	
187	Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis. <i>Molecular Microbiology</i> , 2017 , 106, 304-318	4.1	20	
186	A mechanism for FtsZ-independent proliferation in Streptomyces. <i>Nature Communications</i> , 2017 , 8, 1378	817.4	16	
185	Green fluorescent protein as a reporter for the spatial and temporal expression of actIII in Streptomyces coelicolor. <i>Archives of Microbiology</i> , 2017 , 199, 875-880	3	0	
184	Bacterial Membranes: Structure, Domains, and Function. <i>Annual Review of Microbiology</i> , 2017 , 71, 519-5.	318 7.5	87	
183	and genes are dispensable for growth, cross-wall formation and sporulation in. <i>Heliyon</i> , 2017 , 3, e00459	3.6	4	
182	L-form bacteria, chronic diseases and the origins of life. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371,	5.8	47	
181	Wall proficient E. coli capable of sustained growth in the absence of the Z-ring division machine. <i>Nature Microbiology</i> , 2016 , 1, 16091	26.6	19	
180	Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis. <i>Molecular Microbiology</i> , 2016 , 101, 333-50	4.1	29	
179	A benzamide-dependent ftsZ mutant reveals residues crucial for Z-ring assembly. <i>Molecular Microbiology</i> , 2016 , 99, 1028-42	4.1	14	
178	Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. <i>EMBO Journal</i> , 2015 , 34, 491-501	13	63	
177	Cell growth of wall-free L-form bacteria is limited by oxidative damage. Current Biology, 2015, 25, 1613-	8 6.3	53	
176	Bacterial morphogenesis and the enigmatic MreB helix. <i>Nature Reviews Microbiology</i> , 2015 , 13, 241-8	22.2	97	

175	Bacterial cell morphogenesis does not require a preexisting template structure. <i>Current Biology</i> , 2014 , 24, 863-7	6.3	38
174	Cell cycle regulation by the bacterial nucleoid. <i>Current Opinion in Microbiology</i> , 2014 , 22, 94-101	7.9	56
173	General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. <i>ELife</i> , 2014 , 3,	8.9	72
172	Cell Division during Growth and Sporulation 2014 , 97-109		7
171	Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis. <i>Current Biology</i> , 2014 , 24, 293-8	6.3	60
170	Excess membrane synthesis drives a primitive mode of cell proliferation. <i>Cell</i> , 2013 , 152, 997-1007	56.2	128
169	The conserved DNA-binding protein WhiA is involved in cell division in Bacillus subtilis. <i>Journal of Bacteriology</i> , 2013 , 195, 5450-60	3.5	24
168	L-form bacteria, cell walls and the origins of life. <i>Open Biology</i> , 2013 , 3, 120143	7	130
167	Balanced transcription of cell division genes in Bacillus subtilis as revealed by single cell analysis. <i>Environmental Microbiology</i> , 2013 , 15, 3196-209	5.2	6
166	Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. <i>Molecular Microbiology</i> , 2013 , 89, 1084-98	4.1	61
165	Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. <i>EMBO Journal</i> , 2012 , 31, 1542-55	13	71
164	Crucial role for membrane fluidity in proliferation of primitive cells. <i>Cell Reports</i> , 2012 , 1, 417-23	10.6	53
163	The rod to L-form transition of Bacillus subtilis is limited by a requirement for the protoplast to escape from the cell wall sacculus. <i>Molecular Microbiology</i> , 2012 , 83, 52-66	4.1	39
162	Nucleoid occlusion and bacterial cell division. <i>Nature Reviews Microbiology</i> , 2011 , 10, 8-12	22.2	142
161	The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells. <i>Molecular Cell</i> , 2011 , 41, 720-32	17.6	38
160	Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. <i>Molecular Microbiology</i> , 2011 , 79, 1089-100	4.1	75
159	Multiple effects of benzamide antibiotics on FtsZ function. <i>Molecular Microbiology</i> , 2011 , 80, 68-84	4.1	66
158	Large ring polymers align FtsZ polymers for normal septum formation. <i>EMBO Journal</i> , 2011 , 30, 617-26	13	57

157	A widespread family of bacterial cell wall assembly proteins. EMBO Journal, 2011, 30, 4931-41	13	188
156	Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. <i>PLoS ONE</i> , 2010 , 5, e9724	3.7	28
155	From spores to antibiotics via the cell cycle. <i>Microbiology (United Kingdom)</i> , 2010 , 156, 1-13	2.9	17
154	Functional and morphological adaptation to peptidoglycan precursor alteration in Lactococcus lactis. <i>Journal of Biological Chemistry</i> , 2010 , 285, 24003-13	5.4	8
153	Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis. <i>Microbiology</i> (United Kingdom), 2009 , 155, 3611-3621	2.9	19
152	The cell wall regulator {sigma}I specifically suppresses the lethal phenotype of mbl mutants in Bacillus subtilis. <i>Journal of Bacteriology</i> , 2009 , 191, 1404-13	3.5	36
151	Effects of oriC relocation on control of replication initiation in Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 2009 , 155, 3070-3082	2.9	4
150	The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13347-52	11.5	42
149	Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. <i>Molecular Microbiology</i> , 2009 , 71, 1131-44	4.1	99
148	In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli. <i>Molecular Microbiology</i> , 2009 , 73, 382-96	4.1	57
147	Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. <i>Molecular Microbiology</i> , 2009 , 73, 719-31	4.1	76
146	Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. <i>Molecular Microbiology</i> , 2009 , 74, 395-408	4.1	61
145	Localisation of DivIVA by targeting to negatively curved membranes. <i>EMBO Journal</i> , 2009 , 28, 2272-82	13	237
144	Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. <i>EMBO Journal</i> , 2009 , 28, 1940-52	13	120
143	Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. <i>EMBO Journal</i> , 2009 , 28, 830-42	13	128
142	Life without a wall or division machine in Bacillus subtilis. <i>Nature</i> , 2009 , 457, 849-53	50.4	199
141	Bacterial cell division: assembly, maintenance and disassembly of the Z ring. <i>Nature Reviews Microbiology</i> , 2009 , 7, 642-53	22.2	597
140	A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. <i>Genes and Development</i> , 2009 , 23, 1959-70	12.6	95

139	Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. <i>Cell</i> , 2009 , 137, 685-96	56.2	233
138	Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. <i>Molecular Microbiology</i> , 2008 , 68, 1029-46	4.1	151
137	A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. <i>Molecular Microbiology</i> , 2008 , 70, 1556-69	4.1	127
136	Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. <i>Cell</i> , 2008 , 135, 74-84	56.2	160
135	Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. <i>Journal of Bacteriology</i> , 2008 , 190, 1812-21	3.5	71
134	An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. <i>Science</i> , 2008 , 321, 1673-5	33.3	329
133	Crystal structure of S. aureus YlaN, an essential leucine rich protein involved in the control of cell shape. <i>Proteins: Structure, Function and Bioinformatics</i> , 2007 , 68, 438-45	4.2	5
132	Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. <i>EMBO Journal</i> , 2007 , 26, 4239-51	13	96
131	Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. <i>Nano Letters</i> , 2007 , 7, 796-801	11.5	125
130	Selectivity for D-lactate incorporation into the peptidoglycan precursors of Lactobacillus plantarum: role of Aad, a VanX-like D-alanyl-D-alanine dipeptidase. <i>Journal of Bacteriology</i> , 2007 , 189, 4332-7	3.5	25
129	Essential bacterial functions encoded by gene pairs. <i>Journal of Bacteriology</i> , 2007 , 189, 591-602	3.5	45
128	Multiple interactions between the transmembrane division proteins of Bacillus subtilis and the role of FtsL instability in divisome assembly. <i>Journal of Bacteriology</i> , 2006 , 188, 7396-404	3.5	63
127	Functional analysis of 11 putative essential genes in Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 2895-2907	2.9	93
126	Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. <i>Developmental Cell</i> , 2006 , 11, 399-409	10.2	160
125	Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory. <i>Proteomics</i> , 2006 , 6, 2135-46	4.8	77
124	SepF, a novel FtsZ-interacting protein required for a late step in cell division. <i>Molecular Microbiology</i> , 2006 , 59, 989-99	4.1	120
123	The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. <i>Molecular Microbiology</i> , 2006 , 61, 1352-61	4.1	117
122	Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis. <i>Molecular Microbiology</i> , 2006 , 62, 580-91	4.1	57

(2003-2006)

121	Dimeric structure of the cell shape protein MreC and its functional implications. <i>Molecular Microbiology</i> , 2006 , 62, 1631-42	4.1	79	
120	Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. <i>Journal of Biological Chemistry</i> , 2005 , 280, 39709-15	5.4	92	
119	Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. <i>Molecular Microbiology</i> , 2005 , 55, 349-67	4.1	22	
118	Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. <i>Molecular Microbiology</i> , 2005 , 55, 799-807	4.1	124	
117	A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. <i>Molecular Microbiology</i> , 2005 , 55, 1646-57	4.1	141	
116	Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis. <i>Molecular Microbiology</i> , 2005 , 57, 1196-209	4.1	131	
115	Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29. <i>EMBO Journal</i> , 2005 , 24, 3647-57	13	23	
114	ftsZ mutations affecting cell division frequency, placement and morphology in Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 2005 , 151, 2053-2064	2.9	30	
113	Diversity and redundancy in bacterial chromosome segregation mechanisms. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2005 , 360, 497-505	5.8	33	
112	PBP1 is a component of the Bacillus subtilis cell division machinery. <i>Journal of Bacteriology</i> , 2004 , 186, 5153-6	3.5	43	
111	Genetic analysis of the Bacillus subtilis sigG promoter, which controls the sporulation-specific transcription factor sigma G. <i>Microbiology (United Kingdom)</i> , 2004 , 150, 2277-2287	2.9	10	
110	A divIVA null mutant of Staphylococcus aureus undergoes normal cell division. <i>FEMS Microbiology Letters</i> , 2004 , 240, 145-9	2.9	39	
109	Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. <i>Molecular Microbiology</i> , 2004 , 51, 749-64	4.1	125	
108	Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. <i>Cell</i> , 2004 , 117, 915-25	56.2	310	
107	Cytokinesis in bacteria. <i>Microbiology and Molecular Biology Reviews</i> , 2003 , 67, 52-65, table of contents	13.2	499	
106	Analysis of the interaction between the transcription factor sigmaG and the anti-sigma factor SpoIIAB of Bacillus subtilis. <i>Journal of Bacteriology</i> , 2003 , 185, 4615-9	3.5	15	
105	A dynamic bacterial cytoskeleton. <i>Trends in Cell Biology</i> , 2003 , 13, 577-83	18.3	102	
104	RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. <i>Molecular Microbiology</i> , 2003 , 49, 1463-75	4.1	165	

103	Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. <i>Molecular Microbiology</i> , 2003 , 50, 871-81	4.1	192
102	A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis. <i>Molecular Microbiology</i> , 2003 , 47, 159-69	4.1	35
101	Dynamic proteins and a cytoskeleton in bacteria. <i>Nature Cell Biology</i> , 2003 , 5, 175-8	23.4	66
100	Regulation of endospore formation in Bacillus subtilis. <i>Nature Reviews Microbiology</i> , 2003 , 1, 117-26	22.2	445
99	Essential Bacillus subtilis genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 4678-83	11.5	1115
98	Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. <i>Cell</i> , 2003 , 113, 767-76	56.2	611
97	The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. <i>Developmental Cell</i> , 2003 , 4, 19-28	10.2	169
96	Identification of sporulation genes by genome-wide analysis of the sigmaE regulon of Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 3023-3034	2.9	60
95	Polar targeting of DivIVA in Bacillus subtilis is not directly dependent on FtsZ or PBP 2B. <i>Journal of Bacteriology</i> , 2003 , 185, 693-7	3.5	40
94	The cell differentiation protein SpoIIE contains a regulatory site that controls its phosphatase activity in response to asymmetric septation. <i>Molecular Microbiology</i> , 2002 , 45, 1119-30	4.1	32
93	A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. <i>EMBO Journal</i> , 2002 , 21, 4001-11	13	44
92	Characterization of the parB-like yyaA gene of Bacillus subtilis. <i>Journal of Bacteriology</i> , 2002 , 184, 1102-	· 13.1 5	19
91	An expanded view of bacterial DNA replication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 8342-7	11.5	160
90	Isolation and characterization of topological specificity mutants of minD in Bacillus subtilis. <i>Molecular Microbiology,</i> 2001 , 42, 1211-21	4.1	22
89	Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. <i>Molecular Microbiology</i> , 2001 , 39, 47-53	4.1	248
88	Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. <i>Molecular Microbiology</i> , 2001 , 40, 115-25	4.1	115
87	Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. <i>Molecular Microbiology</i> , 2001 , 41, 743-55	4.1	73
86	DNA transport in bacteria. <i>Nature Reviews Molecular Cell Biology</i> , 2001 , 2, 538-45	48.7	104

(1998-2001)

85	Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. <i>Genes and Development</i> , 2001 , 15, 1662-73	12.6	105
84	Two essential DNA polymerases at the bacterial replication fork. <i>Science</i> , 2001 , 294, 1716-9	33.3	131
83	Dynamic proteins in bacteria. <i>Developmental Cell</i> , 2001 , 1, 10-1	10.2	11
82	Septation and chromosome segregation during sporulation in Bacillus subtilis. <i>Current Opinion in Microbiology</i> , 2001 , 4, 660-6	7.9	36
81	Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. <i>Cell</i> , 2001 , 104, 913-22	56.2	752
80	Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. <i>Molecular Microbiology</i> , 2000 , 35, 299-311	4.1	104
79	Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. <i>Molecular Microbiology</i> , 2000 , 36, 278-89	4.1	68
78	The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. <i>Molecular Microbiology</i> , 2000 , 36, 846-55	4.1	45
77	Dynamic relocalization of phage phi 29 DNA during replication and the role of the viral protein p16.7. <i>EMBO Journal</i> , 2000 , 19, 4182-90	13	17
76	Compartmentalization of transcription and translation in Bacillus subtilis. <i>EMBO Journal</i> , 2000 , 19, 710-	-813	204
75	Analysis of the essential cell division gene ftsL of Bacillus subtilis by mutagenesis and heterologous complementation. <i>Journal of Bacteriology</i> , 2000 , 182, 5572-9	3.5	15
74	Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. <i>Science</i> , 2000 , 290, 995-7	33.3	156
73	Identification and characterization of a new prespore-specific regulatory gene, rsfA, of Bacillus subtilis. <i>Journal of Bacteriology</i> , 2000 , 182, 418-24	3.5	21
72	Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. <i>Molecular Microbiology</i> , 1999 , 33, 84-96	4.1	157
71	Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. <i>Molecular Microbiology</i> , 1999 , 33, 1015-26	4.1	40
70	Upheaval in the bacterial nucleoid. An active chromosome segregation mechanism. <i>Trends in Genetics</i> , 1999 , 15, 70-4	8.5	60
69	Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. <i>Molecular Cell</i> , 1999 , 4, 673-82	17.6	173
68	Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. <i>Molecular Microbiology</i> , 1998 , 27, 777-86	4.1	107

67	A fixed distance for separation of newly replicated copies of oriC in Bacillus subtilis: implications for co-ordination of chromosome segregation and cell division. <i>Molecular Microbiology</i> , 1998 , 28, 981-9	04.1	79
66	Characterization of the essential cell division gene ftsL(yIID) of Bacillus subtilis and its role in the assembly of the division apparatus. <i>Molecular Microbiology</i> , 1998 , 29, 593-604	4.1	97
65	A 28 kbp segment from the spoVM region of the Bacillus subtilis 168 genome. <i>Microbiology (United Kingdom)</i> , 1998 , 144 (Pt 3), 801-805	2.9	8
64	Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. <i>Genes and Development</i> , 1998 , 12, 3419-30	12.6	293
63	Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. <i>Genes and Development</i> , 1998 , 12, 1371-8	30 ^{12.6}	59
62	Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. <i>Genes and Development</i> , 1997 , 11, 1160-8	12.6	275
61	Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR. <i>Journal of Bacteriology</i> , 1997 , 179, 5636-8	3.5	52
60	Bacillus subtilis SpoIIID protein binds to two sites in the spoVD promoter and represses transcription by sigmaE RNA polymerase. <i>Journal of Bacteriology</i> , 1997 , 179, 972-5	3.5	18
59	Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the SpoOJ partitioning protein. <i>Molecular Microbiology</i> , 1997 , 25, 945-54	4.1	159
58	The complete genome sequence of the gram-positive bacterium Bacillus subtilis. <i>Nature</i> , 1997 , 390, 24	9 -5 64	3107
58 57	The complete genome sequence of the gram-positive bacterium Bacillus subtilis. <i>Nature</i> , 1997 , 390, 24 Septal localization of the Spoilie chromosome partitioning protein in Bacillus subtilis. <i>EMBO Journal</i> , 1997 , 16, 2161-9	9-5664	3107
	Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. <i>EMBO Journal</i>		,
57	Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. <i>EMBO Journal</i> , 1997 , 16, 2161-9 The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity	13	128
57 56	Septal localization of the SpolliE chromosome partitioning protein in Bacillus subtilis. <i>EMBO Journal</i> , 1997 , 16, 2161-9 The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. <i>Molecular Microbiology</i> , 1997 , 24, 905-15 Control of the cell-specificity of sigma F activity in Bacillus subtilis. <i>Philosophical Transactions of the</i>	13	128
57 56 55	Septal localization of the SpolliE chromosome partitioning protein in Bacillus subtilis. <i>EMBO Journal</i> , 1997, 16, 2161-9 The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. <i>Molecular Microbiology</i> , 1997, 24, 905-15 Control of the cell-specificity of sigma F activity in Bacillus subtilis. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1996, 351, 537-42 Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 1996, 142	13 4.1 5.8	128 240 7
57565554	Septal localization of the SpolliE chromosome partitioning protein in Bacillus subtilis. <i>EMBO Journal</i> , 1997, 16, 2161-9 The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. <i>Molecular Microbiology</i> , 1997, 24, 905-15 Control of the cell-specificity of sigma F activity in Bacillus subtilis. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1996, 351, 537-42 Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 1996, 142 (Pt 4), 733-740 A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. <i>Journal</i>	13 4.1 5.8 2.9	128 240 7
5756555453	Septal localization of the SpollIE chromosome partitioning protein in Bacillus subtilis. <i>EMBO Journal</i> , 1997, 16, 2161-9 The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. <i>Molecular Microbiology</i> , 1997, 24, 905-15 Control of the cell-specificity of sigma F activity in Bacillus subtilis. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1996, 351, 537-42 Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 1996, 142 (Pt 4), 733-740 A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. <i>Journal of Bacteriology</i> , 1996, 178, 2343-50	13 4.1 5.8 2.9	128 240 7 54 69

49	The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. <i>Molecular Microbiology</i> , 1996 , 21, 501-9	4.1	136
48	Timing and genetic regulation of commitment to sporulation in Bacillus subtilis. <i>Microbiology</i> (United Kingdom), 1996 , 142 (Pt 12), 3445-52	2.9	27
47	Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. <i>Genes and Development</i> , 1996 , 10, 794-803	12.6	95
46	Chromosome partitioning in bacteria. <i>Annual Review of Genetics</i> , 1995 , 29, 41-67	14.5	56
45	Medium-dependent sporulation resulting from a mutation in the spollAB gene of Bacillus subtilis. <i>Microbiology (United Kingdom)</i> , 1995 , 141, 1763-1769	2.9	2
44	Characterization of an insertion in the phage phi 105 genome that blocks host Bacillus subtilis lysis and provides strong expression of heterologous genes. <i>Gene</i> , 1995 , 154, 1-6	3.8	14
43	Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis. <i>Journal of Bacteriology</i> , 1995 , 177, 3923-31	3.5	80
42	Postseptational chromosome partitioning in bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 8630-4	11.5	89
41	Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. <i>Science</i> , 1994 , 264, 572-5	33.3	283
40	Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor sigma F of Bacillus subtilis. <i>Genes and Development</i> , 1994 , 8, 2653-63	12.6	150
39	Use of digitized video microscopy with a fluorogenic enzyme substrate to demonstrate cell- and compartment-specific gene expression in Salmonella enteritidis and Bacillus subtilis. <i>Molecular Microbiology</i> , 1994 , 13, 655-62	4.1	34
38	The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. <i>Journal of Molecular Biology</i> , 1994 , 235, 209-20	6.5	85
37	Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1994 , 91, 3849-53	11.5	82
36	Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. <i>Journal of Molecular Biology</i> , 1993 , 232, 468-83	6.5	79
35	An efficient expression and secretion system based on Bacillus subtilis phage phi 105 and its use for the production of B. cereus beta-lactamase I. <i>Gene</i> , 1993 , 133, 47-53	3.8	25
34	Sigma F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-sigma factor that is also a protein kinase. <i>Cell</i> , 1993 , 74, 735-42	56.2	231
33	Effects of new mutations in the spoIIAB gene of Bacillus subtilis on the regulation of sigma F and sigma G activities. <i>Journal of General Microbiology</i> , 1993 , 139, 3197-203		13
32	DNA sequence of the murE-murD region of Bacillus subtilis 168. <i>Journal of General Microbiology</i> , 1993 , 139, 361-70		30

31	Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. <i>Journal of Bacteriology</i> , 1993 , 175, 7604-16	3.5	80
30	The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. <i>Molecular Microbiology</i> , 1993 , 8, 945-55	4.1	148
29	Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for sigma G activity at an intermediate stage of sporulation. <i>Journal of General Microbiology</i> , 1992 , 138, 2609-18		80
28	Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. <i>Journal of Bacteriology</i> , 1992 , 174, 586-94	3.5	100
27	A novel Bacillus subtilis expression vector based on bacteriophage phi 105. <i>Gene</i> , 1992 , 121, 137-42	3.8	7
26	Establishment of cell-specific transcription during sporulation in Bacillus subtilis. <i>Molecular Microbiology</i> , 1992 , 6, 689-95	4.1	33
25	Bacillus subtilis Sporulation: a Paradigm for the Spatial and Temporal Control of Gene Expression 1992 , 28-44		4
24	The role of sigma F in prespore-specific transcription in Bacillus subtilis. <i>Molecular Microbiology</i> , 1991 , 5, 757-67	4.1	56
23	A model for asymmetric septum formation during sporulation in Bacillus subtilis. <i>Molecular Microbiology</i> , 1991 , 5, 785-9	4.1	3
22	Sequential activation of dual promoters by different sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis. <i>Molecular Microbiology</i> , 1991 , 5, 1363-73	4.1	42
21	The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase. <i>Molecular Microbiology</i> , 1991 , 5, 1927-40	4.1	68
20	Chromosome strand segregation during sporulation in Bacillus subtilis. <i>Molecular Microbiology</i> , 1991 , 5, 1145-9	4.1	7
19	Possible intermediate steps in the evolution of a prokaryotic developmental system. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1991 , 244, 117-21	4.4	11
18	Genetic regulation of morphogenesis in Bacillus subtilis: roles of sigma E and sigma F in prespore engulfment. <i>Journal of Bacteriology</i> , 1991 , 173, 3159-69	3.5	132
17	The Bacillus subtilis spo0J gene: evidence for involvement in catabolite repression of sporulation. <i>Journal of Bacteriology</i> , 1991 , 173, 1911-9	3.5	37
16	Differential gene expression during sporulation in Bacillus subtilis: structure and regulation of the spoIIID gene. <i>Molecular Microbiology</i> , 1990 , 4, 543-51	4.1	42
15	Use of integrational plasmid excision to identify cellular localization of gene expression during sporulation in Bacillus subtilis. <i>Journal of Bacteriology</i> , 1990 , 172, 6937-41	3.5	16
14	The spoIIIA locus is not a major determinant of prespore-specific gene expression during sporulation in Bacillus subtilis. <i>Journal of Bacteriology</i> , 1990 , 172, 6930-6	3.5	10

LIST OF PUBLICATIONS

	13	Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis beta-galactosidase and its regulator. <i>Journal of Bacteriology</i> , 1990 , 172, 488-90	3.5	35	
	12	A rapid and reliable one-step method for isolating DNA fragments from agarose gels. <i>Nucleic Acids Research</i> , 1990 , 18, 5324	20.1	11	
	11	Differential gene expression during sporulation in Bacillus subtilis: regulation of the spoVJ gene. <i>Molecular Microbiology</i> , 1989 , 3, 1053-60	4.1	18	
	10	A new bacteriophage vector for cloning in Bacillus subtilis and the use of phi 105 for protein synthesis in maxicells. <i>Gene</i> , 1989 , 81, 35-43	3.8	29	
	9	The role of the sporulation gene spoIIIE in the regulation of prespore-specific gene expression in Bacillus subtilis. <i>Molecular Microbiology</i> , 1989 , 3, 1247-55	4.1	51	
	8	Transcriptional regulation and structure of the Bacillus subtilis sporulation locus spoIIIC. <i>Journal of Bacteriology</i> , 1988 , 170, 1162-7	3.5	27	
	7	Branched pattern of regulatory interactions between late sporulation genes in Bacillus subtilis. Journal of Bacteriology, 1988 , 170, 796-801	3.5	20	
	6	Two separable functional domains in the sigma-subunit of RNA polymerase in Bacillus subtilis?. <i>FEBS Letters</i> , 1987 , 224, 257-60	3.8	9	
	5	Upper limit for DNA packaging by Bacillus subtilis bacteriophage phi 105: isolation of phage deletion mutants by induction of oversized prophages. <i>Molecular Genetics and Genomics</i> , 1987 , 210, 347	' -51	8	
	4	Duplicated sporulation genes in bacteria. <i>FEBS Letters</i> , 1985 , 188, 184-188	3.8	47	
,	3	Geometric principles underlying the proliferation of a model cell system		1	
	2	L-form switching confers antibiotic, phage and stress tolerance in pathogenic Escherichia coli		1	
	1	CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc		1	