
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5735123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environmental Management, 2002, 30, 391-405.	1.2	1,141
2	Land use change modelling: current practice and research priorities. Geo Journal, 2004, 61, 309-324.	1.7	806
3	Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 2008, 42, 11-37.	1.0	685
4	Framing Sustainability in a Telecoupled World. Ecology and Society, 2013, 18, .	1.0	673
5	Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 2009, 24, 1167-1181.	1.9	612
6	Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7978-7985.	3.3	611
7	Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 2015, 14, 76-85.	3.1	559
8	Challenges in using land use and land cover data for global change studies. Global Change Biology, 2011, 17, 974-989.	4.2	436
9	Mapping ecosystem services demand: A review of current research and future perspectives. Ecological Indicators, 2015, 55, 159-171.	2.6	433
10	From land cover change to land function dynamics: A major challenge to improve land characterization. Journal of Environmental Management, 2009, 90, 1327-1335.	3.8	432
11	Manifestations and underlying drivers of agricultural land use change in Europe. Landscape and Urban Planning, 2015, 133, 24-36.	3.4	422
12	The yield gap of global grain production: A spatial analysis. Agricultural Systems, 2010, 103, 316-326.	3.2	420
13	Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, 2015, 12, 29-41.	1.6	388
14	The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy, 2016, 57, 204-214.	2.5	364
15	Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods. Ecological Economics, 2015, 114, 67-78.	2.9	363
16	Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environmental Modelling and Software, 2013, 45, 1-7.	1.9	345
17	Determinants of Land-Use Change Patterns in the Netherlands. Environment and Planning B: Planning and Design, 2004, 31, 125-150.	1.7	325
18	Middle-range theories of land system change. Global Environmental Change, 2018, 53, 52-67.	3.6	323

#	Article	IF	CITATIONS
19	Policy reform and agricultural land abandonment in the EU. Land Use Policy, 2013, 30, 446-457.	2.5	321
20	A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecological Modelling, 1999, 116, 45-61.	1.2	320
21	Challenges for land system science. Land Use Policy, 2012, 29, 899-910.	2.5	320
22	A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Annals of Regional Science, 2008, 42, 57-77.	1.0	314
23	Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosystem Services, 2012, 1, 62-69.	2.3	312
24	Global protected area expansion is compromised by projected land-use and parochialism. Nature, 2014, 516, 383-386.	13.7	312
25	Spatial quantification and valuation of cultural ecosystem services in an agricultural landscape. Ecological Indicators, 2014, 37, 163-174.	2.6	299
26	Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agriculture, Ecosystems and Environment, 2006, 114, 39-56.	2.5	291
27	Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 2013, 5, 484-493.	3.1	279
28	Land cover change or landâ€use intensification: simulating land system change with a globalâ€scale land change model. Global Change Biology, 2013, 19, 3648-3667.	4.2	278
29	Transitions in European land-management regimes between 1800 and 2010. Land Use Policy, 2015, 49, 53-64.	2.5	261
30	A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 2004, 28, 667-690.	3.3	250
31	A quantitative framework for assessing spatial flows of ecosystem services. Ecological Indicators, 2014, 39, 24-33.	2.6	247
32	European agricultural landscapes, common agricultural policy and ecosystem services: a review. Agronomy for Sustainable Development, 2014, 34, 309-325.	2.2	246
33	A global analysis of land take in cropland areas and production displacement from urbanization. Global Environmental Change, 2017, 43, 107-115.	3.6	243
34	Modelling land use change and environmental impact. Journal of Environmental Management, 2004, 72, 1-3.	3.8	240
35	Trajectories of land use change in Europe: a model-based exploration of rural futures. Landscape Ecology, 2010, 25, 217-232.	1.9	239
36	A conceptual framework for analysing and measuring land-use intensity. Current Opinion in Environmental Sustainability, 2013, 5, 464-470.	3.1	236

#	Article	IF	CITATIONS
37	Methods and approaches to modelling the Anthropocene. Global Environmental Change, 2016, 39, 328-340.	3.6	235
38	Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Global Environmental Change, 2017, 47, 37-50.	3.6	229
39	Projecting land use changes in the Neotropics: The geography of pasture expansion into forest. Global Environmental Change, 2007, 17, 86-104.	3.6	224
40	Continental-scale quantification of landscape values using social media data. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12974-12979.	3.3	224
41	Simulating feedbacks in land use and land cover change models. Landscape Ecology, 2006, 21, 1171-1183.	1.9	221
42	REVIEW: Quantifying urban ecosystem services based on highâ€resolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of Applied Ecology, 2015, 52, 1020-1032.	1.9	220
43	Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biology, 2015, 21, 299-313.	4.2	215
44	Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 2008, 256, 482-490.	1.4	212
45	Spatial characterization of landscape functions. Landscape and Urban Planning, 2008, 88, 34-43.	3.4	208
46	Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landscape and Urban Planning, 2014, 132, 102-110.	3.4	207
47	Future carbon sequestration in Europe—Effects of land use change. Agriculture, Ecosystems and Environment, 2008, 127, 251-264.	2.5	206
48	Green infrastructure for urban climate adaptation: How do residents' views on climate impacts and green infrastructure shape adaptation preferences?. Landscape and Urban Planning, 2017, 157, 106-130.	3.4	205
49	Land System Science: between global challenges and local realities. Current Opinion in Environmental Sustainability, 2013, 5, 433-437.	3.1	204
50	Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecological Indicators, 2014, 38, 198-211.	2.6	204
51	Urban land-use change: The role of strategic spatial planning. Global Environmental Change, 2018, 51, 32-42.	3.6	204
52	Biodiversity scenarios neglect future landâ€use changes. Global Change Biology, 2016, 22, 2505-2515.	4.2	201
53	Assessing Landscape Functions with Broad-Scale Environmental Data: Insights Gained from a Prototype Development for Europe. Environmental Management, 2009, 44, 1099-1120.	1.2	198
54	An agent-based approach to model land-use change at a regional scale. Landscape Ecology, 2010, 25, 185-199.	1.9	198

#	Article	IF	CITATIONS
55	Wild food in Europe: A synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecological Economics, 2014, 105, 292-305.	2.9	198
56	Drivers of Wetland Conversion: a Global Meta-Analysis. PLoS ONE, 2013, 8, e81292.	1.1	189
57	Land use change under conditions of high population pressure: the case of Java. Global Environmental Change, 1999, 9, 303-312.	3.6	186
58	Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecological Indicators, 2014, 36, 131-141.	2.6	185
59	Transitioning to resilience and sustainability in urban communities. Cities, 2013, 32, S21-S28.	2.7	180
60	Hotspots of land use change in Europe. Environmental Research Letters, 2016, 11, 064020.	2.2	174
61	Hotspots of uncertainty in landâ€use and landâ€cover change projections: a globalâ€scale model comparison. Global Change Biology, 2016, 22, 3967-3983.	4.2	171
62	Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecological Indicators, 2010, 10, 62-73.	2.6	169
63	Global priorities for national carnivore conservation under land use change. Scientific Reports, 2016, 6, 23814.	1.6	169
64	A method to define a typology for agent-based analysis in regional land-use research. Agriculture, Ecosystems and Environment, 2008, 128, 27-36.	2.5	168
65	A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences, 2013, 10, 1543-1559.	1.3	163
66	A <scp>L</scp> and <scp>S</scp> ystem representation for global assessments and landâ€use modeling. Global Change Biology, 2012, 18, 3125-3148.	4.2	161
67	Conventional landâ€use intensification reduces species richness and increases production: A global metaâ€analysis. Global Change Biology, 2019, 25, 1941-1956.	4.2	161
68	Spatial relationship between climatologies and changes in global vegetation activity. Global Change Biology, 2013, 19, 1953-1964.	4.2	160
69	Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modelling, 2007, 202, 410-420.	1.2	157
70	Ten facts about land systems for sustainability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	157
71	Form follows function? Proposing a blueprint for ecosystem service assessments based on reviews and case studies. Ecological Indicators, 2012, 21, 145-154.	2.6	155
72	Simulation of changes in the spatial pattern of land use in China. Applied Geography, 1999, 19, 211-233.	1.7	153

#	Article	IF	CITATIONS
73	Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling – a case study. International Journal of Geographical Information Science, 2011, 25, 65-87.	2.2	151
74	Trade-offs of European agricultural abandonment. Land Use Policy, 2017, 62, 290-301.	2.5	151
75	Uncertainties in Ecosystem Service Maps: A Comparison on the European Scale. PLoS ONE, 2014, 9, e109643.	1.1	149
76	Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam. Land Use Policy, 2007, 24, 531-545.	2.5	147
77	Drivers of forest harvesting intensity patterns in Europe. Forest Ecology and Management, 2014, 315, 160-172.	1.4	147
78	Linking Land Change with Driving Forces and Actors: Four Conceptual Models. Ecology and Society, 2010, 15, .	1.0	146
79	Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape. Landscape and Urban Planning, 2018, 177, 128-137.	3.4	145
80	A review of current calibration and validation practices in land-change modeling. Environmental Modelling and Software, 2016, 82, 174-182.	1.9	143
81	Alternative trajectories of land abandonment: causes, consequences and research challenges. Current Opinion in Environmental Sustainability, 2013, 5, 471-476.	3.1	142
82	Archetypical patterns and trajectories of land systems in Europe. Regional Environmental Change, 2018, 18, 715-732.	1.4	142
83	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
84	Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecology, 2004, 19, 77-98.	1.9	139
85	Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape and Urban Planning, 2007, 80, 111-126.	3.4	133
86	Opportunities to improve impact, integration, and evaluation of land change models. Current Opinion in Environmental Sustainability, 2013, 5, 452-457.	3.1	132
87	Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes. Land Use Policy, 2017, 62, 29-39.	2.5	129
88	Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecological Indicators, 2017, 73, 23-28.	2.6	129
89	Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis. PLoS ONE, 2015, 10, e0138918.	1.1	126
90	Exploring ecosystem-change and society through a landscape lens: recent progress in European landscape research. Ecology and Society, 2015, 20, .	1.0	125

#	Article	IF	CITATIONS
91	Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land Use Policy, 2007, 24, 584-599.	2.5	122
92	Land-use and land-cover changes in the Central Rift Valley of Ethiopia: Assessment of perception and adaptation of stakeholders. Applied Geography, 2015, 65, 28-37.	1.7	120
93	Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena, 2007, 71, 110-121.	2.2	119
94	Preferences for European agrarian landscapes: A meta-analysis of case studies. Landscape and Urban Planning, 2014, 132, 89-101.	3.4	118
95	Land system change and food security: towards multi-scale land system solutions. Current Opinion in Environmental Sustainability, 2013, 5, 494-502.	3.1	117
96	The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Applied Geography, 2015, 59, 43-55.	1.7	117
97	Mapping and modelling of changes in agricultural intensity in Europe. Agriculture, Ecosystems and Environment, 2011, 140, 46-56.	2.5	116
98	Mapping recreation and aesthetic value of ecosystems in the Bilbao Metropolitan Greenbelt (northern) Tj ETQq0	0 0 rgBT /	Overlock 10
99	A comparative approach to assess the contribution of landscape features to aesthetic and recreational values in agricultural landscapes. Ecosystem Services, 2016, 17, 87-98.	2.3	115
100	Beyond land cover change: towards a new generation of land use models. Current Opinion in Environmental Sustainability, 2019, 38, 77-85.	3.1	115
101	A Portfolio Approach to Analyzing Complex Human-Environment Interactions: Institutions and Land Change. Ecology and Society, 2006, 11, .	1.0	113
102	Sensitising rural policy: Assessing spatial variation in rural development options for Europe. Land Use Policy, 2011, 28, 447-459.	2.5	112
103	Meta-studies in land use science: Current coverage and prospects. Ambio, 2016, 45, 15-28.	2.8	112
104	Analysis of the effects of land use change on protected areas in the Philippines. Applied Geography, 2006, 26, 153-173.	1.7	111
105	Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological Indicators, 2017, 74, 241-260.	2.6	110
106	Spatial explorations of land use change and grain production in China. Agriculture, Ecosystems and Environment, 2000, 82, 333-354.	2.5	106
107	Synthesis in land change science: methodological patterns, challenges, and guidelines. Regional Environmental Change, 2015, 15, 211-226.	1.4	106
108	Direct and indirect loss of natural habitat due to built-up area expansion: A model-based analysis for the city of Wuhan, China. Land Use Policy, 2018, 74, 231-239.	2.5	106

#	Article	IF	CITATIONS
109	Analysis of land use drivers at the watershed and household level: Linking two paradigms at the Philippine forest fringe. International Journal of Geographical Information Science, 2005, 19, 125-152.	2.2	105
110	Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Regional Environmental Change, 2012, 12, 461-474.	1.4	105
111	How can landscape ecology contribute to sustainability science?. Landscape Ecology, 2018, 33, 1-7.	1.9	104
112	A rural typology for strategic European policies. Land Use Policy, 2012, 29, 473-482.	2.5	103
113	Assessing uncertainties in land cover projections. Clobal Change Biology, 2017, 23, 767-781.	4.2	103
114	Multiscale Characterization of Land-Use Patterns in China. Ecosystems, 2000, 3, 369-385.	1.6	101
115	Multi-scale modelling of land use change dynamics in Ecuador. Agricultural Systems, 1999, 61, 77-93.	3.2	99
116	A land-use systems approach to represent land-use dynamics at continental and global scales. Environmental Modelling and Software, 2012, 33, 61-79.	1.9	99
117	Land system architecture: Using land systems to adapt and mitigate global environmental change. Global Environmental Change, 2013, 23, 395-397.	3.6	99
118	Modeling Land-Use and Land-Cover Change. Global Change - the IGBP Series, 2006, , 117-135.	2.1	98
119	Effects of land use changes on streamflow generation in the Rhine basin. Water Resources Research, 2009, 45, .	1.7	98
120	A review of global potentially available cropland estimates and their consequences for modelâ€based assessments. Global Change Biology, 2015, 21, 1236-1248.	4.2	98
121	Closing global knowledge gaps: Producing generalized knowledge from case studies of social-ecological systems. Global Environmental Change, 2018, 50, 1-14.	3.6	98
122	Mapping and modelling past and future land use change in Europe's cultural landscapes. Land Use Policy, 2019, 80, 332-344.	2.5	98
123	The Need for Scale Sensitive Approaches in Spatially Explicit Land Use Change Modeling. Environmental Modeling and Assessment, 2001, 6, 111-121.	1.2	96
124	Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landscape Ecology, 2017, 32, 481-500.	1.9	96
125	The peri-urbanization of Europe: A systematic review of a multifaceted process. Landscape and Urban Planning, 2020, 196, 103733.	3.4	96
126	Land use change: complexity and comparisons. Journal of Land Use Science, 2008, 3, 1-10.	1.0	94

#	Article	IF	CITATIONS
127	Future landscapes of Switzerland: Risk areas for urbanisation and land abandonment. Applied Geography, 2015, 57, 32-41.	1.7	93
128	A method and application of multi-scale validation in spatial land use models. Agriculture, Ecosystems and Environment, 2001, 85, 223-238.	2.5	92
129	Multilevel modelling of land use from field to village level in the Philippines. Agricultural Systems, 2006, 89, 435-456.	3.2	92
130	Projecting Land-Use Change and Its Consequences for Biodiversity in Northern Thailand. Environmental Management, 2010, 45, 626-639.	1.2	92
131	Impact of EU biofuel policies on world agricultural production and land use. Biomass and Bioenergy, 2011, 35, 2385-2390.	2.9	92
132	Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: A study for land use in Europe. Journal of Environmental Management, 2013, 127, S132-S144.	3.8	92
133	Global change effects on land management in the Mediterranean region. Global Environmental Change, 2018, 50, 238-254.	3.6	91
134	Opportunities for sustainable intensification in European agriculture. Global Environmental Change, 2018, 48, 43-55.	3.6	90
135	Mapping opportunities and challenges for rewilding in Europe. Conservation Biology, 2015, 29, 1017-1027.	2.4	89
136	Modelling interactions and feedback mechanisms between land use change and landscape processes. Agriculture, Ecosystems and Environment, 2009, 129, 157-170.	2.5	87
137	A global assessment of market accessibility and market influence for global environmental change studies. Environmental Research Letters, 2011, 6, 034019.	2.2	87
138	A multi-scale modelling approach for analysing landscape service dynamics. Journal of Environmental Management, 2012, 100, 86-95.	3.8	87
139	Uncertainties in global-scale reconstructions of historical land use: an illustration using the HYDE data set. Landscape Ecology, 2013, 28, 861-877.	1.9	87
140	Use of demand for and spatial flow of ecosystem services to identify priority areas. Conservation Biology, 2017, 31, 860-871.	2.4	87
141	Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agriculture, Ecosystems and Environment, 2009, 133, 86-97.	2.5	86
142	Modelling the spatial distribution of livestock in Europe. Landscape Ecology, 2009, 24, 1207-1222.	1.9	85
143	Optimizing the allocation of agri-environment measures to navigate the trade-offs between ecosystem services, biodiversity and agricultural production. Environmental Science and Policy, 2018, 84, 186-196.	2.4	84
144	Identifying a Safe and Just Corridor for People and the Planet. Earth's Future, 2021, 9, e2020EF001866.	2.4	84

#	Article	IF	CITATIONS
145	Spatio-temporal dynamics of regulating ecosystem services in Europe– The role of past and future land use change. Applied Geography, 2015, 63, 121-135.	1.7	83
146	Crowdsourcing geo-information on landscape perceptions and preferences: A review. Landscape and Urban Planning, 2019, 184, 101-111.	3.4	81
147	Accessibility and land-use patterns at the forest fringe in the northeastern part of the Philippines. Geographical Journal, 2004, 170, 238-255.	1.6	79
148	Combining exploratory scenarios and participatory backcasting: using an agent-based model in participatory policy design for a multi-functional landscape. Landscape Ecology, 2012, 27, 641-658.	1.9	78
149	Drivers of changes in agricultural intensity in Europe. Land Use Policy, 2016, 58, 380-393.	2.5	78
150	Effects of landscape configuration on mapping ecosystem service capacity: a review of evidence and a case study in Scotland. Landscape Ecology, 2016, 31, 1457-1479.	1.9	78
151	Modelling of land cover and agricultural change in Europe: Combining the CLUE and CAPRI-Spat approaches. Agriculture, Ecosystems and Environment, 2011, 142, 40-50.	2.5	76
152	Mediterranean land systems: Representing diversity and intensity of complex land systems in a dynamic region. Landscape and Urban Planning, 2017, 165, 102-116.	3.4	75
153	Is biofuel policy harming biodiversity in Europe?. GCB Bioenergy, 2009, 1, 18-34.	2.5	74
154	Combining agent functional types, capitals and services to model land use dynamics. Environmental Modelling and Software, 2014, 59, 187-201.	1.9	73
155	Modelling the spatial distribution of linear landscape elements in Europe. Ecological Indicators, 2013, 27, 125-136.	2.6	71
156	Demand for biodiversity protection and carbon storage as drivers of global land change scenarios. Global Environmental Change, 2016, 40, 101-111.	3.6	71
157	Representing composition, spatial structure and management intensity of European agricultural landscapes: A new typology. Landscape and Urban Planning, 2016, 150, 36-49.	3.4	71
158	Meeting global land restoration and protection targets: What would the world look like in 2050?. Global Environmental Change, 2018, 52, 259-272.	3.6	71
159	Spatially explicit modelling of biofuel crops in Europe. Biomass and Bioenergy, 2011, 35, 2411-2424.	2.9	70
160	Simulating and delineating future land change trajectories across Europe. Regional Environmental Change, 2018, 18, 733-749.	1.4	70
161	Global scenarios for biodiversity need to better integrate climate and land use change. Diversity and Distributions, 2017, 23, 1231-1234.	1.9	69
162	Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth System Dynamics, 2017, 8, 369-386.	2.7	69

#	Article	IF	CITATIONS
163	Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series. Remote Sensing, 2018, 10, 1221.	1.8	69
164	Multi-scale system approaches in agronomic research at the landscape level. Soil and Tillage Research, 2001, 58, 129-140.	2.6	68
165	The representation of landscapes in global scale assessments of environmental change. Landscape Ecology, 2013, 28, 1067-1080.	1.9	68
166	Global change and the distributional dynamics of migratory bird populations wintering in Central America. Global Change Biology, 2017, 23, 5284-5296.	4.2	68
167	Contribution of Topographically Based Landslide Hazard Modelling to the Analysis of the Spatial Distribution and Ecology of Kauri (Agathis australis). Landscape Ecology, 2006, 21, 63-76.	1.9	67
168	Impact assessment of the European biofuel directive on land use and biodiversity. Journal of Environmental Management, 2010, 91, 1389-1396.	3.8	67
169	Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach. Ecological Economics, 2017, 136, 14-29.	2.9	67
170	Monitoring and modelling landscape dynamics. Landscape Ecology, 2010, 25, 163-167.	1.9	66
171	Introduction to the Special Issue on Spatial modeling to explore land use dynamics. International Journal of Geographical Information Science, 2005, 19, 99-102.	2.2	65
172	Agricultural landscapes, ecosystem services and regional competitiveness—Assessing drivers and mechanisms in nine European case study areas. Land Use Policy, 2018, 76, 735-745.	2.5	65
173	Modelling feedbacks between human and natural processes in the land system. Earth System Dynamics, 2018, 9, 895-914.	2.7	65
174	Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran. Land Use Policy, 2020, 90, 104299.	2.5	65
175	The role of spatially explicit models in land-use change research: a case study for cropping patterns in China. Agriculture, Ecosystems and Environment, 2001, 85, 177-190.	2.5	64
176	Effects of farmers' decisions on the landscape structure of a Dutch rural region: An agent-based approach. Landscape and Urban Planning, 2010, 97, 98-110.	3.4	64
177	Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria). Natural Hazards, 2013, 68, 1243-1270.	1.6	63
178	Mapping landscape services: a case study in a multifunctional rural landscape in The Netherlands. Ecological Indicators, 2013, 24, 273-283.	2.6	63
179	Public Support for Wetland Restoration: What is the Link With Ecosystem Service Values?. Wetlands, 2016, 36, 467-481.	0.7	62
180	Beyond the urban-rural dichotomy: Towards a more nuanced analysis of changes in built-up land. Computers, Environment and Urban Systems, 2019, 74, 41-49.	3.3	61

#	Article	IF	CITATIONS
181	Evaluation of small scale water harvesting techniques for semi-arid environments. Journal of Arid Environments, 2015, 118, 48-57.	1.2	60
182	Harmonizing Biodiversity Conservation and Productivity in the Context of Increasing Demands on Landscapes. BioScience, 2016, 66, 890-896.	2.2	60
183	A conceptual model to integrate the regional context in landscape policy, management and contribution to rural development: Literature review and European case study evidence. Geoforum, 2017, 82, 1-12.	1.4	60
184	A spatially explicit representation of conservation agriculture for application in global change studies. Global Change Biology, 2018, 24, 4038-4053.	4.2	59
185	Characterization of the spatial distribution of farming systems in the Kenyan Highlands. Applied Geography, 2010, 30, 239-253.	1.7	58
186	Exploring global irrigation patterns: A multilevel modelling approach. Agricultural Systems, 2011, 104, 703-713.	3.2	58
187	Developing a methodology for a species-based and spatially explicit indicator for biodiversity on agricultural land in the EU. Ecological Indicators, 2014, 37, 186-198.	2.6	57
188	Mapping recreation as an ecosystem service: Considering scale, interregional differences and the influence of physical attributes. Landscape and Urban Planning, 2018, 175, 149-160.	3.4	56
189	Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Regional Environmental Change, 2016, 16, 1225-1238.	1.4	55
190	Mapping and linking supply- and demand-side measures in climate-smart agriculture. A review. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	55
191	Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landscape and Urban Planning, 2014, 122, 41-55.	3.4	54
192	Comparing outdoor recreation preferences in peri-urban landscapes using different data gathering methods. Landscape and Urban Planning, 2020, 199, 103796.	3.4	54
193	Complex systems models and the management of error and uncertainty. Journal of Land Use Science, 2008, 3, 11-25.	1.0	53
194	GlobeLand30 shows little cropland area loss but greater fragmentation in China. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 37-45.	1.4	52
195	Ground-water level, moisture supply, and vegetation in the Netherlands. Wetlands, 1997, 17, 528-538.	0.7	50
196	Developing and comparing optimal and empirical land-use models for the development of an urbanized watershed forest in Taiwan. Landscape and Urban Planning, 2009, 92, 242-254.	3.4	50
197	Ex Ante Impact Assessment of Policies Affecting Land Use, Part B: Application of the Analytical Framework. Ecology and Society, 2011, 16, .	1.0	50
198	Mapping wood production in European forests. Forest Ecology and Management, 2015, 357, 228-238.	1.4	50

#	Article	IF	CITATIONS
199	Local land-use decision-making in a global context. Environmental Research Letters, 2019, 14, 083006.	2.2	50
200	Towards better mapping of forest management patterns: A global allocation approach. Forest Ecology and Management, 2019, 432, 776-785.	1.4	49
201	Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degradation and Development, 2020, 31, 1252-1264.	1.8	49
202	Evaluating the impact of regional development policies on future landscape services. Ecological Economics, 2010, 69, 2244-2254.	2.9	48
203	Climate change and the food production system: impacts and adaptation in China. Regional Environmental Change, 2014, 14, 1-5.	1.4	48
204	Mapping landscape potential for outdoor recreation using different archetypical recreation user groups in the European Union. Ecological Indicators, 2018, 85, 105-116.	2.6	48
205	Integrated Landscape Approach: Closing the Gap between Theory and Application. Sustainability, 2017, 9, 1371.	1.6	47
206	Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 2020, 63, 102085.	3.6	47
207	The role of small scale sand dams in securing water supply under climate change in Ethiopia. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 317-339.	1.0	46
208	What is the future of abandoned agricultural lands? A systematic review of alternative trajectories in Europe. Land Use Policy, 2022, 112, 105833.	2.5	46
209	Scenarios of land system change in the Lao PDR: Transitions in response to alternative demands on goods and services provided by the land. Applied Geography, 2016, 75, 1-11.	1.7	45
210	Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe. Global Change Biology, 2016, 22, 2526-2539.	4.2	44
211	Spatial and temporal dynamics of methane emissions from agricultural sources in China. Global Change Biology, 2001, 7, 31-47.	4.2	43
212	Ineffective biodiversity policy due to five rebound effects. Ecosystem Services, 2012, 1, 101-110.	2.3	43
213	Adaptation of land management in the Mediterranean under scenarios of irrigation water use and availability. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 821-837.	1.0	42
214	Inclusive conservation and the Post-2020 Global Biodiversity Framework: Tensions and prospects. One Earth, 2022, 5, 252-264.	3.6	42
215	Spatial variability of acid sulphate soils in the Plain of Reeds, Mekong delta, Vietnam. Geoderma, 2000, 97, 1-19.	2.3	41
216	Combining satellite data and agricultural statistics to map grassland management intensity in Europe. Environmental Research Letters, 2018, 13, 074020.	2.2	40

#	Article	IF	CITATIONS
217	Assessing the environmental impacts of production- and consumption-side measures in sustainable agriculture intensification in the European Union. Geoderma, 2019, 338, 555-567.	2.3	40
218	Mapping global patterns of land use decision-making. Global Environmental Change, 2020, 65, 102170.	3.6	40
219	From land-use/land-cover to land system science. Ambio, 2021, 50, 1291-1294.	2.8	40
220	Global trends and local variations in land take per person. Landscape and Urban Planning, 2022, 218, 104308.	3.4	40
221	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	3.4	40
222	An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services. Landscape Ecology, 2012, 27, 473-486.	1.9	39
223	Habitat loss, extinction predictability and conservation efforts in the terrestrial ecoregions. Biological Conservation, 2020, 246, 108579.	1.9	39
224	Balancing conservation priorities for nature and for people in Europe. Science, 2021, 372, 856-860.	6.0	39
225	Land-use change simulation and assessment of driving factors in the loess hilly region—a case study as Pengyang County. Environmental Monitoring and Assessment, 2010, 164, 133-142.	1.3	38
226	Effect of Land Cover Data on Nitrous Oxide Inventory in Fen Meadows. Journal of Environmental Quality, 2008, 37, 1209-1219.	1.0	37
227	Integrated land use and regional resource management – A cross-disciplinary dialogue on future perspectives for a sustainable development of regional resources. Journal of Environmental Management, 2013, 127, S1-S5.	3.8	37
228	A survey-based exploration of land-system dynamics in an agricultural region of Northeast China. Agricultural Systems, 2013, 121, 106-116.	3.2	37
229	Using choice modeling to map aesthetic values at a landscape scale: Lessons from a Dutch case study. Ecological Economics, 2016, 130, 221-231.	2.9	37
230	Understanding Land System Change Through Scenario-Based Simulations: A Case Study from the Drylands in Northern China. Environmental Management, 2017, 59, 440-454.	1.2	37
231	Abandonment landscapes: user attitudes, alternative futures and land management in Castro Laboreiro, Portugal. Regional Environmental Change, 2018, 18, 1509-1520.	1.4	37
232	Accounting for multiple ecosystem services in a simulation of landâ€use decisions: Does it reduce tropical deforestation?. Global Change Biology, 2020, 26, 2403-2420.	4.2	37
233	A causal analysis framework for land-use change and the potential role of bioenergy policy. Land Use Policy, 2016, 59, 516-527.	2.5	36
234	On the contribution of modelling to multifunctional agriculture: Learning from comparisons. Journal of Environmental Management, 2009, 90, S147-S160.	3.8	34

#	Article	IF	CITATIONS
235	Shifts in ecosystem services in deprived urban areas: understanding people's responses and consequences for well-being. Ecology and Society, 2017, 22, .	1.0	34
236	An agent-based approach to explore the effect of voluntary mechanisms on land use change: A case in rural Queensland, Australia. Journal of Environmental Management, 2010, 91, 2615-2625.	3.8	33
237	From meta-studies to modeling: Using synthesis knowledge to build broadly applicable process-based land change models. Environmental Modelling and Software, 2015, 72, 10-20.	1.9	33
238	Land Cover Change and Woodland Degradation in a Charcoal Producing Semiâ€Arid Area in Kenya. Land Degradation and Development, 2017, 28, 472-481.	1.8	33
239	Exploring tranquillity experienced in landscapes based on social media. Applied Geography, 2019, 113, 102112.	1.7	33
240	Understanding the role of illicit transactions in land-change dynamics. Nature Sustainability, 2020, 3, 175-181.	11.5	33
241	Telecoupled environmental impacts of current and alternative Western diets. Global Environmental Change, 2020, 62, 102066.	3.6	33
242	Core Principles and Concepts in Land-Use Modelling: A Literature Review. Geospatial Technology and the Role of Location in Science, 2011, , 35-57.	0.2	33
243	A quantitative assessment of policy options for no net loss of biodiversity and ecosystem services in the European Union. Land Use Policy, 2016, 57, 151-163.	2.5	32
244	Assessing the harvested area gap in China. Agricultural Systems, 2017, 153, 212-220.	3.2	32
245	Exploring changes in the spatial distribution of livestock in China. Agricultural Systems, 1999, 62, 51-67.	3.2	31
246	Shifting roles of urban green space in the context of urban development and global change. Current Opinion in Environmental Sustainability, 2017, 29, 32-39.	3.1	31
247	Prioritize diversity or declining species? Trade-offs and synergies in spatial planning for the conservation of migratory birds in the face of land cover change. Biological Conservation, 2019, 239, 108285.	1.9	31
248	Combining remote sensing and household level data for regional scale analysis of land cover change in the Brazilian Amazon. Regional Environmental Change, 2010, 10, 371-386.	1.4	30
249	Disentangling the effects of landâ€use change, climate and <scp><scp>CO₂</scp></scp> on projected future <scp>E</scp> uropean habitat types. Global Ecology and Biogeography, 2015, 24, 653-663.	2.7	30
250	Identifying assets and constraints for rural development with qualitative scenarios: A case study of Castro Laboreiro, Portugal. Landscape and Urban Planning, 2011, 102, 127-141.	3.4	29
251	Land use change and farmer behavior in reclaimed land in the middle Jiangsu coast, China. Ocean and Coastal Management, 2017, 137, 107-117.	2.0	29
252	Long-term change in drivers of forest cover expansion: an analysis for Switzerland (1850-2000). Regional Environmental Change, 2017, 17, 2223-2235.	1.4	29

#	Article	IF	CITATIONS
253	Priority questions for the science, policy and practice of cultural landscapes in Europe. Landscape Ecology, 2017, 32, 2083-2096.	1.9	29
254	A multiscale gaming approach to understand farmer's decision making in the boom of maize cultivation in Laos. Ecology and Society, 2018, 23, .	1.0	29
255	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Technology, 2019, 53, 8479-8481.	4.6	29
256	Identifying Agricultural Frontiers for Modeling Global Cropland Expansion. One Earth, 2020, 3, 504-514.	3.6	29
257	Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making. One Earth, 2021, 4, 967-985.	3.6	29
258	Upscaling Regional Emissions of Greenhouse Gases from Rice Cultivation: Methods and Sources of Uncertainty. Plant Ecology, 2006, 182, 89-106.	0.7	28
259	The effect of charcoal production and other land uses on diversity, structure and regeneration of woodlands in a semi-arid area in Kenya. Forest Ecology and Management, 2017, 391, 282-295.	1.4	28
260	Ecosystem service supply by European landscapes under alternative land-use and environmental policies. International Journal of Biodiversity Science, Ecosystem Services & Management, 2017, 13, 342-354.	2.9	28
261	The overlooked spatial dimension of climateâ€smart agriculture. Global Change Biology, 2020, 26, 1045-1054.	4.2	28
262	World congress highlights need for action. Landscape Ecology, 2008, 23, 1-2.	1.9	27
263	Modelled biophysical impacts of conservation agriculture on local climates. Global Change Biology, 2018, 24, 4758-4774.	4.2	27
264	A Stepwise, Participatory Approach to Design and Implement Community Based Adaptation to Drought in the Peruvian Andes. Sustainability, 2015, 7, 1742-1773.	1.6	26
265	Identifying pathways to visions of future land use in Europe. Regional Environmental Change, 2018, 18, 817-830.	1.4	26
266	Farmers' participation in the development of land use policies for the Central Rift Valley of Ethiopia. Land Use Policy, 2018, 71, 129-137.	2.5	26
267	Settlement changes after peak population: Land system projections for China until 2050. Landscape and Urban Planning, 2021, 209, 104045.	3.4	26
268	The potential of European abandoned agricultural lands to contribute to the Green Deal objectives: Policy perspectives. Environmental Science and Policy, 2022, 133, 44-53.	2.4	26
269	Agency shifts in agricultural land governance and their implications for land degradation neutrality. Global Environmental Change, 2021, 66, 102221.	3.6	25
270	The geography of megatrends affecting European agriculture. Global Environmental Change, 2022, 75, 102551.	3.6	25

#	Article	IF	CITATIONS
271	Pushing the Planetary Boundaries. Science, 2012, 338, 1419-1420.	6.0	24
272	Interpretation of Climate Change and Agricultural Adaptations by Local Household Farmers: a Case Study at Bin County, Northeast China. Journal of Integrative Agriculture, 2014, 13, 1599-1608.	1.7	24
273	Model-based analysis of spatio-temporal changes in land use in Northeast China. Journal of Chinese Geography, 2016, 26, 171-187.	1.5	24
274	Characterization and analysis of farm system changes in the Mar Chiquita basin, Argentina. Applied Geography, 2016, 68, 95-103.	1.7	24
275	Cultural landscapes and behavioral transformations: An agent-based model for the simulation and discussion of alternative landscape futures in East Lesvos, Greece. Land Use Policy, 2017, 65, 26-44.	2.5	24
276	Mapping settlement systems in China and their change trajectories between 1990 and 2010. Habitat International, 2019, 94, 102069.	2.3	24
277	Characterizing outdoor recreation user groups: A typology of peri-urban recreationists in the Kromme Rijn area, the Netherlands. Land Use Policy, 2019, 80, 246-258.	2.5	24
278	Multi-scale scenarios of spatial-temporal dynamics in the European livestock sector. Agriculture, Ecosystems and Environment, 2011, 140, 88-101.	2.5	23
279	Experiments in Globalisation, Food Security and Land Use Decision Making. PLoS ONE, 2014, 9, e114213.	1.1	23
280	Evolution of Land Use in the Brazilian Amazon: From Frontier Expansion to Market Chain Dynamics. Land, 2014, 3, 981-1014.	1.2	23
281	Including stakeholders' perspectives on ecosystem services in multifunctionality assessments. Ecosystems and People, 2020, 16, 354-368.	1.3	23
282	Setting robust biodiversity goals. Conservation Letters, 2021, 14, e12816.	2.8	23
283	Quantifying deforestation and secondary forest determinants for different spatial extents in an Amazonian colonization frontier (Rondonia). Applied Geography, 2009, 29, 182-193.	1.7	22
284	Using Life Strategies to Explore the Vulnerability of Ecosystem Services to Invasion by Alien Plants. Ecosystems, 2013, 16, 678-693.	1.6	22
285	Spatio-Temporal Changes in the Rice Planting Area and Their Relationship to Climate Change in Northeast China: A Model-Based Analysis. Journal of Integrative Agriculture, 2014, 13, 1575-1585.	1.7	22
286	Analyzing dynamics and values of cultural landscapes. Landscape Ecology, 2017, 32, 2077-2081.	1.9	22
287	What restrains Ethiopian NGOs to participate in the development of policies for natural resource management?. Environmental Science and Policy, 2018, 89, 292-299.	2.4	22
288	EU's rural development policy at the regional level—Are expenditures for natural capital linked with territorial needs?. Land Use Policy, 2018, 77, 344-353.	2.5	22

#	Article	IF	CITATIONS
289	The role of institutional actors and their interactions in the land use policy making process in Ethiopia. Journal of Environmental Management, 2019, 237, 235-246.	3.8	22
290	Expanding the toolbox: Assessing methods for local outdoor recreation planning. Landscape and Urban Planning, 2021, 212, 104105.	3.4	21
291	Upscaling methane emissions from rice paddies: Problems and possibilities. Global Biogeochemical Cycles, 2002, 16, 14-1-14-12.	1.9	20
292	Quantifying spatiotemporal drivers of environmental heterogeneity in Kruger National Park, South Africa. Landscape Ecology, 2016, 31, 2013-2029.	1.9	20
293	Shifting spatial priorities for ecosystem services in Europe following land use change. Ecological Indicators, 2018, 89, 397-410.	2.6	20
294	Representing large-scale land acquisitions in land use change scenarios for the Lao PDR. Regional Environmental Change, 2018, 18, 1857-1869.	1.4	20
295	Spatial Analysis of Cultural Heritage Landscapes in Rural China: Land Use Change and Its Risks for Conservation. Environmental Management, 2016, 57, 1304-1318.	1.2	19
296	Harvested area gaps in China between 1981 and 2010: effects of climatic and land management factors. Environmental Research Letters, 2018, 13, 044006.	2.2	18
297	Modeling different urban change trajectories and their trade-offs with food production in Jiangsu Province, China. Computers, Environment and Urban Systems, 2019, 77, 101355.	3.3	18
298	Explaining the global spatial distribution of organic crop producers. Agricultural Systems, 2019, 176, 102680.	3.2	18
299	Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review. Sustainability, 2019, 11, 1162.	1.6	18
300	The spatial restructuring and determinants of industrial landscape in a mega city under rapid urbanization. Habitat International, 2020, 95, 102099.	2.3	18
301	Impact of cropland displacement on the potential crop production in China: a multi-scale analysis. Regional Environmental Change, 2020, 20, 1.	1.4	18
302	Improving National-Scale Carbon Stock Inventories Using Knowledge on Land Use History. Environmental Management, 2013, 51, 709-723.	1.2	17
303	Economic valuation at all cost? The role of the price attribute in a landscape preference study. Ecosystem Services, 2016, 22, 289-296.	2.3	17
304	Lessons and Challenges in Land Change Modeling Derived from Synthesis of Cross-Case Comparisons. Geotechnologies and the Environment, 2018, , 143-164.	0.3	17
305	Future governance options for large-scale land acquisition in Cambodia: Impacts on tree cover and tiger landscapes. Environmental Science and Policy, 2019, 94, 9-19.	2.4	17
306	Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Diversity and Distributions, 2019, 25, 880-894.	1.9	17

#	Article	IF	CITATIONS
307	A new European land systems representation accounting for landscape characteristics. Landscape Ecology, 2021, 36, 2215-2234.	1.9	17
308	Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy. Agricultural Systems, 2021, 188, 103024.	3.2	17
309	How will land degradation neutrality change future land system patterns? A scenario simulation study. Environmental Science and Policy, 2021, 124, 254-266.	2.4	17
310	Title is missing!. Nutrient Cycling in Agroecosystems, 2000, 58, 285-301.	1.1	16
311	Landscape level analysis of the spatial and temporal complexity of land-use change. Geophysical Monograph Series, 2004, , 217-230.	0.1	16
312	Sensitivity of discharge and flood frequency to twenty-first century and late Holocene changes in climate and land use (River Meuse, northwest Europe). Climatic Change, 2011, 106, 179-202.	1.7	16
313	Testing the applicability of ecosystem services mapping methods for peri-urban contexts: A case study for Paris. Ecological Indicators, 2017, 83, 504-514.	2.6	16
314	Perspectives of farmers and tourists on agricultural abandonment in east Lesvos, Greece. Regional Environmental Change, 2018, 18, 1467-1479.	1.4	16
315	Modeling the spatio-temporal changes in land uses and its impacts on ecosystem services in Northeast China over 2000–2050. Journal of Chinese Geography, 2018, 28, 1611-1625.	1.5	16
316	Different environmental drivers of alien tree invasion affect different life-stages and operate at different spatial scales. Forest Ecology and Management, 2019, 433, 263-275.	1.4	16
317	Conceptualizing pathways to sustainable agricultural intensification. Advances in Ecological Research, 2020, 63, 161-192.	1.4	16
318	Which forests could be protected by corporate zero deforestation commitments? A spatial assessment. Environmental Research Letters, 2020, 15, 064021.	2.2	16
319	A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways. Regional Environmental Change, 2018, 18, 751-762.	1.4	15
320	Operationalizing a land systems classification for Laos. Landscape and Urban Planning, 2018, 169, 229-240.	3.4	15
321	Delivering an enabling environment and multiple benefits for land degradation neutrality: Stakeholder perceptions and progress. Environmental Science and Policy, 2020, 114, 109-118.	2.4	15
322	The influence of company sourcing patterns on the adoption and effectiveness of zero-deforestation commitments in Brazil's soy supply chain. Environmental Science and Policy, 2022, 128, 208-215.	2.4	15
323	Effects of interpolation and data resolution on methane emission estimates from rice paddies. Environmental and Ecological Statistics, 2002, 9, 5-26.	1.9	14
324	Shaping the landscape: Agricultural policies and local biodiversity schemes. Land Use Policy, 2009, 26, 273-283.	2.5	14

#	Article	IF	CITATIONS
325	Cultural landscapes of the future: using agent-based modeling to discuss and develop the use and management of the cultural landscape of South West Devon. Landscape Ecology, 2017, 32, 2113-2132.	1.9	14
326	Farm scale as a driver of agricultural development in the Kenyan Rift Valley. Agricultural Systems, 2021, 186, 102943.	3.2	14
327	Local deforestation spillovers induced by forest moratoria: Evidence from Indonesia. Land Use Policy, 2021, 109, 105690.	2.5	14
328	Ecosystem services: building informed policies to orient landscape dynamics. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 185-189.	2.9	13
329	How to fit the distribution of apex scavengers into landâ€abandonment scenarios? The Cinereous vulture in the Mediterranean biome. Diversity and Distributions, 2018, 24, 1018-1031.	1.9	13
330	AÂglobal assessment of gross and net land change dynamics for current conditions and future scenarios. Earth System Dynamics, 2018, 9, 441-458.	2.7	13
331	Dynamic Simulation of Land-Use Change Trajectories with the Clue-S Model. , 2007, , 321-337.		12
332	Sustainable woodland management and livelihood options in a charcoal producing region: An agent-based modelling approach. Journal of Environmental Management, 2019, 248, 109245.	3.8	12
333	The contribution of charcoal production to rural livelihoods in a semi-arid area in Kenya. Environment, Development and Sustainability, 2020, 22, 6931-6960.	2.7	12
334	The Impact of Accounting for Future Wood Production in Global Vertebrate Biodiversity Assessments. Environmental Management, 2020, 66, 460-475.	1.2	12
335	Whose park? Crowdsourcing citizen's urban green space preferences to inform needs-based management decisions. Sustainable Cities and Society, 2021, 74, 103249.	5.1	12
336	Socioeconomic outcomes of agricultural land use change in Southeast Asia. Ambio, 2022, 51, 1094-1109.	2.8	12
337	Accounting for land use changes beyond the farm-level in sustainability assessments: The impact of cocoa production. Science of the Total Environment, 2022, 825, 154032.	3.9	12
338	Willingness to offset? Residents' perspectives on compensating impacts from urban development through woodland restoration. Land Use Policy, 2016, 58, 403-414.	2.5	11
339	From concepts to practice: combining different approaches to understand drivers of landscape change. Ecology and Society, 2018, 23, .	1.0	11
340	Contextualizing local landscape initiatives in global change: a scenario study for the high forest zone, Ghana. Regional Environmental Change, 2020, 20, 1.	1.4	11
341	Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches. Ecosystem Services, 2020, 46, 101202.	2.3	11
342	Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services. Earth System Dynamics, 2021, 12, 327-351.	2.7	11

#	Article	IF	CITATIONS
343	Conceptual and Empirical Approaches to Mapping and Quantifying Land-Use Intensity. , 2014, , 61-86.		10
344	Advancing the study of driving forces of landscape change. Journal of Land Use Science, 2022, 17, 540-555.	1.0	10
345	Mapping biodiversity and ecosystem service trade-offs and synergies of agricultural change trajectories in Europe. Environmental Science and Policy, 2022, 136, 387-399.	2.4	10
346	Evaluation of agricultural ecosystem services in fallowing land based on farmers' participation and model simulation. Paddy and Water Environment, 2012, 10, 301-310.	1.0	9
347	Modelling the location and spatial pattern of a crop boom. A case study from Laos. Environmental Science and Policy, 2019, 99, 58-71.	2.4	9
348	Restoring steppe landscapes: patterns, drivers and implications in Russia's steppes. Landscape Ecology, 2021, 36, 407-425.	1.9	9
349	Mapping demand and supply of functional niches of urban green space. Ecological Indicators, 2022, 140, 109031.	2.6	9
350	Focus on cross-scale feedbacks in global sustainable land management. Environmental Research Letters, 2018, 13, 090402.	2.2	8
351	Assessing the contribution of mobility in the European Union to rubber expansion. Ambio, 2022, 51, 770-783.	2.8	8
352	Trends in future N2O emissions due to land use change. Journal of Environmental Management, 2012, 94, 78-90.	3.8	7
353	Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda. Remote Sensing, 2020, 12, 3468.	1.8	7
354	Dynamic Simulation of Land-Use Change Trajectories with the Clueâ \in s Model. , 0, , 321-335.		7
355	An approach for comparing agricultural development to societal visions. Agronomy for Sustainable Development, 2022, 42, 5.	2.2	7
356	Trade-offs between prosperity and urban land per capita in major world cities. Geography and Sustainability, 2021, 2, 134-138.	1.9	6
357	Landscape level simulation of land use change. , 2008, , 211-227.		6
358	The advantage of mobile technologies in crowdsourcing landscape preferences: Testing a mobile app to inform planning decisions. Urban Forestry and Urban Greening, 2022, 73, 127610.	2.3	6
359	Ecosystems and Biodiversity. , 0, , 72-136.		5
360	Key Driving Factors Influencing Urban Growth: Spatial-Statistical Modelling with CLUE-s. , 2014, , 123-145.		5

#	Article	IF	CITATIONS
361	Environmental cognitions mediate the causal explanation of land change. Journal of Land Use Science, 2018, 13, 535-548.	1.0	5
362	Understanding land system dynamics and its consequences. Journal of Chinese Geography, 2018, 28, 1563-1566.	1.5	5
363	Effect of temporal resolution on N ₂ O emission inventories in Dutch fen meadows. Global Biogeochemical Cycles, 2009, 23, .	1.9	4
364	Accounting for monogastric livestock as a driver in global land use and cover change assessments. Journal of Land Use Science, 2017, 12, 1-16.	1.0	4
365	European Wilderness in a Time of Farmland Abandonment. , 2015, , 25-46.		4
366	Mapping ecosystem services. , 2015, , 65-86.		3
367	Representing responses to climate change in spatial land system models. Land Degradation and Development, 2021, 32, 4954-4973.	1.8	3
368	The Representation of Human-Environment Interactions in Land Change Research and Modelling. , 2014, , 161-177.		3
369	Trade-Offs and Synergies Between Biodiversity Conservation and Productivity in the Context of Increasing Demands on Landscapes. , 2019, , 251-256.		2
370	Feedback Loops in Conceptual Models of Land Change: Lost in Complexity?. Ecology and Society, 2011, 16, .	1.0	2
371	The Use of Models to Assess the Impact of Land Use Change on Ecological Processes: Case-Studies of Deforestation in South-East Asia. , 2004, , 475-494.		2
372	From statistics to grids: A two-level model to simulate crop pattern dynamics. Journal of Integrative Agriculture, 2022, 21, 1786-1798.	1.7	2
373	Agriculture, climate and future land use patterns: potential for a simulation-based exploration. Environment & Policy, 2006, , 5-32.	0.4	1
374	Toolbox: Spatial Analysis and Modelling. , 2019, , 251-260.		1
375	Spatial Explicit Land Use Change Scenarios for Policy Purposes: Some Applications of the CLUE Framework. , 2002, , 317-341.		1
376	Globalisation, Regionalisation and Behavioural Responses of Land Use Agents. Lecture Notes in Computer Science, 2014, , 101-114.	1.0	1
377	Modeling Land Use and Biodiversity in Northern Thailand. , 0, , 199-218.		1
378	Upscaling regional emissions of greenhouse gases from rice cultivation: methods and sources of uncertainty. , 2006, , 89-108.		0

22

#	Article	IF	CITATIONS
379	Statistical analysis and feedback exploration of land use change determinants at local scale in the brazilian amazon. , 2007, , .		Ο
380	Linear objects impact on grassland degradation in the typical steppe region of China. , 2011, , .		0
381	Simulating Land Use Policies Targeted to Protect Biodiversity with the CLUE-Scanner Model. , 0, , 119-132.		0