Concepcion Domingo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734688/publications.pdf

Version: 2024-02-01

140 papers 4,119 citations

109264 35 h-index 54 g-index

140 all docs

140 docs citations

140 times ranked 4548 citing authors

#	Article	IF	CITATIONS
1	Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dental Materials, 2002, 18, 49-57.	1.6	153
2	Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation. Journal of Materials Science, 1997, 32, 1025-1028.	1.7	134
3	Low-Temperature Deposition of TiO2 Thin Films with Photocatalytic Activity from Colloidal Anatase Aqueous Solutions. Chemistry of Materials, 2001, 13, 2567-2573.	3.2	130
4	Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle. Journal of Supercritical Fluids, 1997, 10, 39-55.	1.6	124
5	Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation. Journal of Materials Science, 2008, 43, 3101-3111.	1.7	116
6	Morphological Properties of \hat{l}_{\pm} -FeOOH, \hat{l}_{\pm} -FeOOH and Fe3O4 Obtained by Oxidation of Aqueous Fe(II) Solutions. Journal of Colloid and Interface Science, 1994, 165, 244-252.	5.0	103
7	Calcite precipitation by a high-pressure CO2 carbonation route. Journal of Supercritical Fluids, 2006, 36, 202-215.	1.6	96
8	Evaluation of drug delivery characteristics of microspheres of PMMA–PCL–cholesterol obtained by supercritical-CO2 impregnation and by dissolution–evaporation techniques. Journal of Controlled Release, 2004, 99, 231-240.	4.8	90
9	Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature. Cement and Concrete Research, 2007, 37, 63-70.	4.6	90
10	Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics. Journal of Biomedical Materials Research Part B, 2001, 56, 297-305.	3.0	67
11	Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials. Dental Materials, 2003, 19, 478-486.	1.6	67
12	Grafting of trialkoxysilane on the surface of nanoparticles by conventional wet alcoholic and supercritical carbon dioxide deposition methods. Journal of Supercritical Fluids, 2006, 37, 72-86.	1.6	67
13	Impregnation of a biocompatible polymer aided by supercritical CO2: Evaluation of drug stability and drug–matrix interactions. Journal of Supercritical Fluids, 2009, 48, 56-63.	1.6	65
14	Modification of Composition and Microstructure of Portland Cement Pastes as a Result of Natural and Supercritical Carbonation Procedures. Industrial & Engineering Chemistry Research, 2006, 45, 4985-4992.	1.8	63
15	Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media. Journal of Crystal Growth, 2004, 271, 268-273.	0.7	61
16	Mechanism of drug release from silica-gelatin aerogelâ€"Relationship between matrix structure and release kinetics. Colloids and Surfaces B: Biointerfaces, 2017, 152, 229-237.	2.5	60
17	Nanostructured zinc oxide films grown from microwave activated aqueous solutions. Thin Solid Films, 2005, 483, 79-83.	0.8	56
18	An overview of the analytical characterization of nanostructured drug delivery systems: Towards green and sustainable pharmaceuticals: A review. Analytica Chimica Acta, 2012, 744, 8-22.	2.6	56

#	Article	IF	CITATIONS
19	New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes. Journal of Supercritical Fluids, 2008, 43, 500-509.	1.6	55
20	Bio-safe fabrication of PLA scaffolds for bone tissue engineering by combining phase separation, porogen leaching and scCO2 drying. Journal of Supercritical Fluids, 2015, 97, 238-246.	1.6	55
21	Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. International Journal of Pharmaceutics, 2015, 496, 360-370.	2.6	51
22	Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. Journal of Supercritical Fluids, 2013, 73, 34-42.	1.6	50
23	Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability. Carbohydrate Polymers, 2020, 230, 115598.	5.1	50
24	Anhydrous Supercritical Carbon Dioxide Method for the Controlled Silanization of Inorganic Nanoparticles. Advanced Materials, 2004, 16, 739-744.	11.1	47
25	A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. Journal of Supercritical Fluids, 2010, 52, 298-305.	1.6	45
26	Preparation of silane-coated TiO2 nanoparticles in supercritical CO2. Journal of Colloid and Interface Science, 2009, 338, 491-499.	5.0	44
27	Encapsulation efficiency of solid lipid hybrid particles prepared using the PGSS® technique and loaded with different polarity active agents. Journal of Supercritical Fluids, 2010, 54, 342-347.	1.6	42
28	Production of hybrid lipid-based particles loaded with inorganic nanoparticles and active compounds for prolonged topical release. International Journal of Pharmaceutics, 2009, 382, 296-304.	2.6	39
29	Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds. Materials Science and Engineering C, 2020, 117, 111245.	3.8	39
30	Microwave activated chemical bath deposition (MW-CBD) of zinc oxide: Influence of bath composition and substrate characteristics. Journal of Crystal Growth, 2005, 285, 6-16.	0.7	38
31	Supercritical CO2 processing of polymers for the production of materials with applications in tissue engineering and drug delivery. Journal of Materials Science, 2008, 43, 1939-1947.	1.7	38
32	Supercritical CO2 antisolvent precipitation of polymer networks of I-PLA, PMMA and PMMA/PCL blends for biomedical applications. European Polymer Journal, 2008, 44, 1081-1094.	2.6	37
33	Kinetics of oxidative precipitation of iron oxide particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 79, 177-189.	2.3	36
34	Solid-state foaming of biodegradable polyesters by means of supercritical CO2/ethyl lactate mixtures: Towards designing advanced materials by means of sustainable processes. European Polymer Journal, 2014, 51, 1-11.	2.6	36
35	Analysis of CO ₂ Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations. Energy &	2.5	36
36	Supercritical CO 2 for the synthesis of nanometric ZIF-8 and loading with hyperbranched aminopolymers. Applications in CO 2 capture. Journal of CO2 Utilization, 2017, 18, 147-155.	3.3	36

#	Article	IF	CITATIONS
37	Crystalline Curcumin bioMOF Obtained by Precipitation in Supercritical CO ₂ and Structural Determination by Electron Diffraction Tomography. ACS Sustainable Chemistry and Engineering, 2018, 6, 12309-12319.	3.2	36
38	Preparation and Characterization of Surface Silanized TiO ₂ Nanoparticles under Compressed CO ₂ : Reaction Kinetics. Journal of Physical Chemistry C, 2009, 113, 13780-13786.	1.5	35
39	Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process. Acta Biomaterialia, 2009, 5, 1094-1103.	4.1	34
40	The effect of ethyl-lactate and ethyl-acetate plasticizers on PCL and PCL–HA composites foamed with supercritical CO2. Journal of Supercritical Fluids, 2014, 95, 394-406.	1.6	34
41	Dopamine/TiO2 hybrid thin films prepared by the liquid phase deposition method. Thin Solid Films, 2008, 516, 3831-3835.	0.8	33
42	Supercritical CO 2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal. International Journal of Pharmaceutics, 2015, 496, 654-663.	2.6	33
43	The pathways to spinel iron oxides by oxidation of iron (II) in basic media. Materials Research Bulletin, 1991, 26, 47-55.	2.7	32
44	Behavior of poly(methyl methacrylate)-based systems in supercritical CO2 and CO2 plus cosolvent: Solubility measurements and process assessment. Journal of Applied Polymer Science, 2003, 90, 3652-3659.	1.3	32
45	Process performances and characteristics of powders produced using supercritical CO2 as solvent and antisolvent. Powder Technology, 2004, 142, 13-22.	2.1	32
46	Making microporous nanometre-scale fibrous PLA aerogels with clean and reliable supercritical CO2 based approaches. Microporous and Mesoporous Materials, 2014, 184, 162-168.	2.2	32
47	Regenerable solid CO2 sorbents prepared by supercritical grafting of aminoalkoxysilane into low-cost mesoporous silica. Journal of Supercritical Fluids, 2014, 85, 68-80.	1.6	31
48	Porosity and Water Permeability Study of Supercritically Carbonated Cement Pastes Involving Mineral Additions. Industrial & Engineering Chemistry Research, 2007, 46, 2488-2496.	1.8	30
49	Metal–Organic Frameworks Precipitated by Reactive Crystallization in Supercritical CO ₂ . Crystal Growth and Design, 2017, 17, 2864-2872.	1.4	30
50	PCL foamed scaffolds loaded with 5-fluorouracil anti-cancer drug prepared by an eco-friendly route. Materials Science and Engineering C, 2017, 75, 1191-1197.	3.8	29
51	Measurements and Correlation of Octyltriethoxysilane Solubility in Supercritical CO ₂ and Assembly of Functional Silane Monolayers on the Surface of Nanometric Particles. Industrial & Description of Engineering Chemistry Research, 2009, 48, 9952-9960.	1.8	28
52	Sorption of tryalkoxysilane in low-cost porous silicates using a supercritical CO2 method. Microporous and Mesoporous Materials, 2012, 148, 15-24.	2.2	28
53	CO2 capture efficiency and carbonation/calcination kinetics of micro and nanosized particles of supercritically precipitated calcium carbonate. Chemical Engineering Journal, 2013, 226, 357-366.	6.6	28
54	Immobilization of BMP-2 and VEGF within Multilayered Polydopamine-Coated Scaffolds and the Resulting Osteogenic and Angiogenic Synergy of Co-Cultured Human Mesenchymal Stem Cells and Human Endothelial Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 6418.	1.8	28

#	Article	IF	Citations
55	Towards the synthesis of Schiff base macrocycles under supercritical CO2 conditions. Chemical Communications, 2010, 46, 4315.	2.2	27
56	Alkylsilane-Functionalized Microporous and Mesoporous Materials: Molecular Simulation and Experimental Analysis of Gas Adsorption. Journal of Physical Chemistry C, 2012, 116, 10150-10161.	1.5	25
57	Understanding the Performance of New Amine-Functionalized Mesoporous Silica Materials for CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2014, 53, 15611-15619.	1.8	25
58	Pore structure properties of scaffolds constituted by aggregated microparticles of PCL and PCL-HA processed by phase separation. Journal of Porous Materials, 2015, 22, 425-435.	1.3	25
59	Study of adsorption processes of model drugs at supercritical conditions using partial least squares regression. Analytica Chimica Acta, 2002, 452, 311-319.	2.6	24
60	Influence of expansion conditions on the characteristics of cholesterol crystals analyzed by statistical design. Journal of Supercritical Fluids, 2004, 31, 313-322.	1.6	24
61	Binary supercritical CO 2 solvent mixtures for the synthesis of 3D metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 234, 155-161.	2.2	24
62	Polycaprolactone foams prepared by supercritical CO2 batch foaming of polymer/organic solvent solutions. Journal of Supercritical Fluids, 2019, 143, 146-156.	1.6	24
63	Solid crystallization by rapid expansion of supercritical ternary mixtures. Journal of Crystal Growth, 1999, 198-199, 760-766.	0.7	23
64	Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors. Journal of Colloid and Interface Science, 2010, 344, 327-333.	5.0	23
65	Single or two-solute adsorption processes at supercritical conditions: an experimental study. Journal of Supercritical Fluids, 2001, 21, 147-157.	1.6	22
66	Titanium(IV) oxide thin films obtained by a two-step soft-solution method. Thin Solid Films, 2002, 411, 185-191.	0.8	22
67	Preparation of photoelectrodes with spectral response in the visible without applied bias based on photochemically deposited copper oxide inside a porous titanium dioxide film. Thin Solid Films, 2005, 489, 50-55.	0.8	22
68	Hybrid aminopolymer–silica materials for efficient CO ₂ adsorption. RSC Advances, 2015, 5, 104943-104953.	1.7	22
69	Synthesis, crystal structure and magnetic properties of a Cu(II) paddle-wheel complex with mixed bridges. Inorganic Chemistry Communication, 2016, 71, 90-93.	1.8	22
70	A clean and sustainable route towards the design and fabrication of biodegradable foams by means of supercritical CO2/ethyl lactate solid-state foaming. RSC Advances, 2013, 3, 17355.	1.7	21
71	Macroporous and nanometre scale fibrous PLA and PLA–HA composite scaffolds fabricated by a bio safe strategy. RSC Advances, 2014, 4, 61491-61502.	1.7	21
72	PCL-HA microscaffolds for <i>in vitro</i> modular bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1865-1875.	1.3	21

#	Article	IF	CITATIONS
73	The role of conducting-oxide-substrate type and morphology in TiO2 films grown by microwave chemical bath deposition (MW-CBD) and their photovoltaic characteristics. Journal of Crystal Growth, 2004, 262, 366-374.	0.7	20
74	Interaction of bentonite with supercritically carbonated concrete. Applied Clay Science, 2009, 42, 488-496.	2.6	20
75	A new method using compressed CO2 for the in situ functionalization of mesoporous silica with hyperbranched polymers. Chemical Communications, 2013, 49, 11776.	2.2	20
76	Precipitation of ultrafine benzoic acid by expansion of a supercritical carbon dioxide solution through a porous plate nozzle. Journal of Crystal Growth, 1996, 166, 989-995.	0.7	19
77	Precipitation of PMMA/PCL blends using supercritical carbon dioxide. Journal of Applied Polymer Science, 2004, 91, 2422-2426.	1.3	19
78	Spectroscopic and chromatographic characterization of triflusal delivery systems prepared by using supercritical impregnation technologies. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 456-462.	1.4	19
79	Solvent―and thermalâ€induced crystallization of polyâ€< scp>Lâ€lactic acid in supercritical CO ₂ medium. Journal of Applied Polymer Science, 2009, 111, 291-300.	1.3	19
80	Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation. Materials Science and Engineering C, 2016, 63, 512-521.	3.8	19
81	HKUST-1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO ₂ and CH ₄ Adsorption and Separation. ACS Applied Nano Materials, 2021, 4, 12712-12725.	2.4	19
82	Principal component analysis and cluster analysis for the characterization of dental composites. Analyst, The, 2000, 125, 2044-2048.	1.7	18
83	One step room temperature photodeposition of Cu/TiO2 composite films and its conversion to CuO/TiO2. Thin Solid Films, 2009, 517, 5621-5624.	0.8	18
84	Monitoring the Effect of Mineral Precursor, Fluid Phase CO ₂ â€"H ₂ O Composition, and Stirring on CaCO ₃ Crystallization in a Supercriticalâ€"Ultrasound Carbonation Process. Crystal Growth and Design, 2011, 11, 5324-5332.	1.4	18
85	Nature and reactivity of intermediates in the auto-oxidation of iron (II) in aqueous acid media. Solid State Ionics, 1993, 59, 187-195.	1.3	17
86	Processing of microporous VPI-5 molecular sieve by using supercritical CO2: stability and adsorption properties. Microporous and Mesoporous Materials, 2002, 54, 127-137.	2.2	17
87	Solvent effect on tolbutamide crystallization induced by compressed CO2 as antisolvent. Journal of Crystal Growth, 2007, 309, 76-85.	0.7	17
88	Compressed antisolvent process for polymer coating of drug-loaded aerogel nanoparticles and study of the release behavior. Colloid and Polymer Science, 2014, 292, 2475-2484.	1.0	16
89	Modulating <i>p</i> -hydroxycinnamate behavior as a ditopic linker or photoacid in copper(<scp>ii</scp>) complexes with an auxiliary pyridine ligand. Dalton Transactions, 2018, 47, 6479-6493.	1.6	16
90	Microwave radiation as heating method in the synthesis of titanium dioxide nanoparticles from hexafluorotitanate-organic salts. Materials Research Bulletin, 2010, 45, 1224-1229.	2.7	15

#	Article	IF	Citations
91	Solution-processable ZnO nanoparticles obtained by low-temperature solventless synthesis. Journal of Materials Chemistry, 2011, 21, 4408.	6.7	15
92	A novel bio-safe phase separation process for preparing open-pore biodegradable polycaprolactone microparticles. Materials Science and Engineering C, 2014, 42, 102-110.	3.8	15
93	Preparation and Characterization of Graphene Oxide Aerogels: Exploring the Limits of Supercritical CO ₂ Fabrication Methods. Chemistry - A European Journal, 2018, 24, 15903-15911.	1.7	15
94	Hexafluorotitanate salts containing organic cations: use as a reaction medium and precursor to the synthesis of titanium dioxide. Chemical Communications, 2007, , 4659.	2.2	14
95	Supercritical CO2 utilization for the crystallization of 2D metal-organic frameworks using tert-butylpyridine additive. Journal of CO2 Utilization, 2018, 24, 444-453.	3.3	14
96	Features of supercritical CO2 in the delicate world of the nanopores. Journal of Supercritical Fluids, 2018, 134, 204-213.	1.6	14
97	Low temperature <i>N</i> , <i>N</i> -dimethylformamide-assisted synthesis and characterization of anataseâ€"rutile biphasic nanostructured titania. Nanotechnology, 2009, 20, 125604.	1.3	13
98	Assessment of scCO2 techniques for surface modification of micro- and nanoparticles: Process design methodology based on solubility. Journal of Supercritical Fluids, 2010, 54, 362-368.	1.6	13
99	A clean and effective supercritical carbon dioxide method for the host–guest synthesis and encapsulation of photoactive molecules in nanoporous matrices. Green Chemistry, 2010, 12, 2196.	4.6	13
100	Spectroscopic analysis of triflusal impregnated into PMMA from supercritical CO2 solution. Vibrational Spectroscopy, 2009, 49, 183-189.	1.2	12
101	Application of principal component analysis to the thermal characterization of silanized nanoparticles obtained at supercritical carbon dioxide conditions. Analytica Chimica Acta, 2009, 635, 227-234.	2.6	12
102	Straightforward synthesis of a novel hydronium titanium oxyfluoride. Materials Chemistry and Physics, 2010, 124, 904-907.	2.0	12
103	Characterization of new topical ketoprofen formulations prepared by drug entrapment in solid lipid matrices. Journal of Pharmaceutical Sciences, 2011, 100, 4783-4789.	1.6	12
104	Solution-processable carboxylate-capped CuO nanoparticles obtained by a simple solventless method. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	12
105	Effect of blowing agent composition and processing parameters on the low temperature foaming of poly(I-lactide/caprolactone) co-polymer by means of supercritical CO2/ethyl lactate binary mixtures. Journal of Supercritical Fluids, 2013, 84, 195-204.	1.6	12
106	Surface Morphology, Crystallinity, and Hydrophilicity of Poly(εâ€εaprolactone) Films Prepared Via Casting of Ethyl Lactate and Ethyl Acetate Solutions. Macromolecular Chemistry and Physics, 2015, 216, 49-58.	1.1	12
107	Fully supercritical CO2 preparation of a nanostructured MOF composite with application in cutaneous drug delivery. Journal of Supercritical Fluids, 2021, 178, 105379.	1.6	12
108	Chemical modification of nanometric TiO2 particles by anchoring functional silane molecules in supercritical CO2. Applied Surface Science, 2014, 296, 114-123.	3.1	11

#	Article	IF	CITATIONS
109	Lowâ€temperature clean preparation of poly(lactic acid) foams by combining ethyl lactate and supercritical <scp>CO ₂</scp> : correlation between processing and foam pore structure. Polymer International, 2014, 63, 1303-1310.	1.6	11
110	Green and Solvent-Free Supercritical CO ₂ -Assisted Production of Superparamagnetic Graphene Oxide Aerogels: Application as a Superior Contrast Agent in MRI. ACS Sustainable Chemistry and Engineering, 2020, 8, 4877-4888.	3.2	11
111	TiO2–CuO three-dimensional heterostructure obtained using short time photochemical deposition of copper oxide inside a porous nanocrystalline TiO2 layer. Microporous and Mesoporous Materials, 2008, 109, 560-566.	2.2	10
112	Impregnation of a triphenylpyrylium cation into zeolite cavities using supercritical CO2. Journal of Supercritical Fluids, 2009, 50, 305-312.	1.6	10
113	Low-temperature and ambient-pressure synthesis of TiO2(B). Materials Letters, 2010, 64, 2357-2359.	1.3	10
114	Mild Synthetic Routes to Highâ€Surface Zinc Oxide Nanopowders. European Journal of Inorganic Chemistry, 2010, 2010, 1649-1654.	1.0	10
115	Preparation of trityl cations in faujasite micropores through supercritical CO2 impregnation. Microporous and Mesoporous Materials, 2010, 132, 357-362.	2.2	10
116	Solution processable titanium dioxide precursor and nanoparticulated ink: Application in Dye Sensitized Solar Cells. Journal of Colloid and Interface Science, 2014, 416, 112-118.	5.0	10
117	A Flexible Hydrogen Bonded Organic Framework That Reversibly Adsorbs Acetic Acid: \hat{l}^3 Trimesic Acid. Crystal Growth and Design, 2018, 18, 6621-6626.	1.4	10
118	Preparation of Nanostructured Organic–Inorganic Hybrid Materials Using Supercritical Fluid Technology. Composite Interfaces, 2009, 16, 143-155.	1.3	9
119	A novel solventless coating method to graft low-molecular weight polyethyleneimine on silica fine powders. Journal of Polymer Science Part A, 2014, 52, 2760-2768.	2.5	9
120	Hollow Microcrystals of Copper Hexafluoroacetylacetonate-Pyridine Derivative Adducts via Supercritical CO ₂ Recrystallization. Crystal Growth and Design, 2016, 16, 1725-1736.	1.4	9
121	Meso/microporous MOF@graphene oxide composite aerogels prepared by generic supercritical CO2 technology. Microporous and Mesoporous Materials, 2022, 335, 111825.	2.2	9
122	Solution processable TiO2 nanoparticles capped with lauryl gallate. Materials Letters, 2012, 89, 296-298.	1.3	8
123	Tuning the Structure and Flexibility of Coordination Polymers via Solvent Control of Tritopic Triazine Conformation during Crystallization. Crystal Growth and Design, 2020, 20, 3304-3315.	1.4	8
124	Single molecule magnets of cobalt and zinc homo- and heterometallic coordination polymers prepared by a one-step synthetic procedure. RSC Advances, 2020, 10, 45090-45104.	1.7	8
125	Bottom-up approach for the preparation of hybrid nanosheets based on coordination polymers made of metal–diethyloxaloacetate complexes linked by 4,4′-bipyridine. CrystEngComm, 2017, 19, 4972-4982.	1.3	6
126	Supramolecular Hydrogels Consisting of Nanofibers Increase the Bioavailability of Curcuminoids in Inflammatory Skin Diseases. ACS Applied Nano Materials, 2022, 5, 13829-13839.	2.4	6

#	Article	IF	CITATIONS
127	Preparation and study of naproxen in silica and lipid/polymer hybrid composites. RSC Advances, 2014, 4, 7084.	1.7	5
128	Novel Zn(II) Coordination Polymers Based on the Natural Molecule Bisdemethoxycurcumin. Crystal Growth and Design, 2020, 20, 6555-6564.	1.4	5
129	A Clean Low-Temperature ZnO Deposition Method for Multipurpose Applications. European Journal of Inorganic Chemistry, 2011, 2011, 821-825.	1.0	4
130	High surface area nanocrystalline hausmannite synthesized by a solvent-free route. Materials Research Bulletin, 2012, 47, 2369-2374.	2.7	4
131	Study of the morphology and texture of poly($\hat{l}\mu$ -caprolactone)/polyethylene oxide blend films as a function of composition and the addition of nanofillers with different functionalities. RSC Advances, 2015, 5, 59354-59363.	1.7	4
132	Supercritical CO2 antisolvent precipitation from biocompatible polymer solutions: A novel sustainable approach for biomaterials design and fabrication. Journal of Supercritical Fluids, 2015, 105, 9-20.	1.6	4
133	Application of chemometric techniques to the characterisation of impregnated materials obtained following supercritical fluid technology. Analyst, The, 2001, 126, 1792-1796.	1.7	3
134	An equation of state for poreâ€confined fluids. AICHE Journal, 2012, 58, 3597-3600.	1.8	3
135	Lead(II) fluoride particles synthesized by a straightforward mechanochemical route. Materials Letters, 2016, 163, 76-80.	1.3	3
136	Effect of the Pyridine Substituent on the Role of the Phenol Functional Group in [Cu(pOHBz) ₂ (dPy) ₂] Complexes (pOHBz: pâ€Hydroxybenzoate, dPy=) Tj ETQq0 0 0 0	gB ō #Over	lock 10 Tf 50
137	Broadening the scope of high structural dimensionality nanomaterials using pyridine-based curcuminoids. Dalton Transactions, 2021, 50, 7056-7064.	1.6	2
138	Controlled Selfâ€Assembly of Mesoporous CuO Networks Guided by Organic Interlinking. Particle and Particle Systems Characterization, 2019, 36, 1800453.	1.2	1
139	Supramolecular Isomerism in Cobalt(II) Coordination Polymers Built from 3,5-Bis(trifluoromethyl)benzoate and 4,4′-Bipyridine. Crystal Growth and Design, 2022, 22, 4463-4471.	1.4	1
140	Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms. , 2014 , , .		0