Igor Yashayaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734659/publications.pdf Version: 2024-02-01

ICOP YASHAVAEV

#	Article	IF	CITATIONS
1	Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges. Scientific Reports, 2022, 12, 3356.	3.3	15
2	The CISE-LOCEAN seawater isotopic database (1998–2021). Earth System Science Data, 2022, 14, 2721-2735.	9.9	6
3	Recent nutrient enrichment and high biological productivity in the Labrador Sea is tied to enhanced winter convection. Progress in Oceanography, 2022, 206, 102848.	3.2	3
4	Deep ocean microbial communities produce more stable dissolved organic matter through the succession of rare prokaryotes. Science Advances, 2022, 8, .	10.3	16
5	A 30Â‥ear Time Series of Transient Tracerâ€Based Estimates of Anthropogenic Carbon in the Central Labrador Sea. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017092.	2.6	6
6	Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nature Communications, 2021, 12, 3002.	12.8	47
7	Time scales of the Greenland Freshwater Anomaly in the Subpolar North Atlantic. Journal of Climate, 2021, , 1-58.	3.2	3
8	Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats. Frontiers in Marine Science, 2020, 7, .	2.5	117
9	3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic. Scientific Reports, 2020, 10, 21421.	3.3	7
10	Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 2020, 11, 585.	12.8	142
11	Labrador Sea Water Formation Rate and Its Impact on the Local Meridional Overturning Circulation. Journal of Geophysical Research: Oceans, 2019, 124, 5654-5670.	2.6	18
12	A sea change in our view of overturning in the subpolar North Atlantic. Science, 2019, 363, 516-521.	12.6	333
13	Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic. Journal of Geophysical Research: Oceans, 2019, 124, 3333-3360.	2.6	48
14	Changes in zooplankton communities from epipelagic to lower mesopelagic waters. Marine Environmental Research, 2019, 146, 1-11.	2.5	10
15	Sources and Distribution of Fresh Water Around Cape Farewell in 2014. Journal of Geophysical Research: Oceans, 2019, 124, 9404-9416.	2.6	5
16	North Atlantic extratropical and subpolar gyre variability during the last 120Âyears: a gridded dataset of surface temperature, salinity, and density. Part 1: dataset validation and RMS variability. Ocean Dynamics, 2019, 69, 385-403.	2.2	11
17	Connectivity modelling of areas closed to protect vulnerable marine ecosystems in the northwest Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 143, 85-103.	1.4	29
18	Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argoâ€O ₂ Data. Global Biogeochemical Cycles, 2018, 32, 635-653.	4.9	27

#	Article	IF	CITATIONS
19	Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 2018, 556, 227-230.	27.8	293
20	Assessment of Quality and Reliability of Measurements with XBT Sippican T5 and T5/20. Journal of Atmospheric and Oceanic Technology, 2018, 35, 1935-1960.	1.3	5
21	Predicted distribution of the glass sponge Vazella pourtalesi on the Scotian Shelf and its persistence in the face of climatic variability. PLoS ONE, 2018, 13, e0205505.	2.5	36
22	Diatom Biogeography From the Labrador Sea Revealed Through a Trait-Based Approach. Frontiers in Marine Science, 2018, 5, .	2.5	12
23	Composition of freshwater in the spring of 2014 on the southern Labrador shelf and slope. Journal of Geophysical Research: Oceans, 2017, 122, 1102-1121.	2.6	13
24	Further intensification of deep convection in the Labrador Sea in 2016. Geophysical Research Letters, 2017, 44, 1429-1438.	4.0	110
25	Tracking Labrador Sea Water property signals along the Deep Western Boundary Current. Journal of Geophysical Research: Oceans, 2017, 122, 5348-5366.	2.6	34
26	Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: a review. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160321.	3.4	41
27	Water mass circulation and weathering inputs in the Labrador Sea based on coupled Hf–Nd isotope compositions and rare earth element distributions. Geochimica Et Cosmochimica Acta, 2017, 199, 164-184.	3.9	24
28	Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa (Scleractinia: Anthozoa) reef in Greenlandic waters. Polar Biology, 2017, 40, 321-337.	1.2	28
29	Using Noble Gas Measurements to Derive Air‣ea Process Information and Predict Physical Gas Saturations. Geophysical Research Letters, 2017, 44, 9901-9909.	4.0	17
30	Spring phytoplankton communities of the Labrador Sea (2005–2014): pigment signatures, photophysiology and elemental ratios. Biogeosciences, 2017, 14, 1235-1259.	3.3	33
31	Relevance of dissolved organic nutrients for the Arctic Ocean nutrient budget. Geophysical Research Letters, 2016, 43, 6418-6426.	4.0	13
32	Variability of the directly observed, middepth subpolar North Atlantic circulation. Geophysical Research Letters, 2016, 43, 2700-2708.	4.0	16
33	Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. Journal of Geophysical Research: Oceans, 2016, 121, 8095-8114.	2.6	152
34	An abrupt shift in the Labrador Current System in relation to winter NAO events. Journal of Geophysical Research: Oceans, 2016, 121, 5338-5349.	2.6	25
35	Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior. Nature Communications, 2016, 7, 13244.	12.8	69
36	Biogeographical patterns and environmental controls of phytoplankton communities from contrasting hydrographical zones of the Labrador Sea. Progress in Oceanography, 2016, 141, 212-226.	3.2	30

#	Article	IF	CITATIONS
37	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 2016, 97, 65-90.	2.4	131
38	Variability of <scp>L</scp> abrador <scp>S</scp> ea <scp>W</scp> ater transported through Flemish Pass during 1993–2013. Journal of Geophysical Research: Oceans, 2015, 120, 5514-5533.	2.6	10
39	A breaking internal wave in the surface ocean boundary layer. Journal of Geophysical Research: Oceans, 2015, 120, 4151-4161.	2.6	6
40	A new collective view of oceanography of the Arctic and North Atlantic basins. Progress in Oceanography, 2015, 132, 1-21.	3.2	39
41	Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 98, 102-114.	1.4	67
42	The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas. Progress in Oceanography, 2015, 132, 68-127.	3.2	80
43	Studies of Labrador Sea Water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Progress in Oceanography, 2015, 132, 220-232.	3.2	82
44	Seasonality of the inshore Labrador current over the Newfoundland shelf. Continental Shelf Research, 2015, 100, 1-10.	1.8	14
45	Climate Comparisons and Change Projections for the Northwest Atlantic from Six CMIP5 Models. Atmosphere - Ocean, 2015, 53, 529-555.	1.6	25
46	North Atlantic atmospheric and ocean inter-annual variability over the past fifty years – Dominant patterns and decadal shifts. Progress in Oceanography, 2015, 132, 197-219.	3.2	11
47	Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age. Paleoceanography, 2014, 29, 160-175.	3.0	42
48	Role of Resolved and Parameterized Eddies in the Labrador Sea Balance of Heat and Buoyancy. Journal of Physical Oceanography, 2014, 44, 3008-3032.	1.7	22
49	Surface buoyant plumes from melting icebergs in the Labrador Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 91, 1-9.	1.4	14
50	Absolute velocity along the AR7W section in the Labrador Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 72, 72-87.	1.4	35
51	The interannual variability of potential temperature in the central Labrador Sea. Journal of Geophysical Research, 2012, 117, .	3.3	9
52	Decadal and multi-decadal variability of Labrador Sea Water in the north-western North Atlantic Ocean derived from tracer distributions: Heat budget, ventilation, and advection. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 505-523.	1.4	61
53	Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1819-1832.	1.4	116
54	Migration Pathways, Behavioural Thermoregulation and Overwintering Grounds of Blue Sharks in the Northwest Atlantic. PLoS ONE, 2011, 6, e16854.	2.5	106

#	Article	IF	CITATIONS
55	Mesoscale physical variability affects zooplankton production in the Labrador Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 703-715.	1.4	20
56	Irminger Current Anticyclones in the Labrador Sea observed in the hydrographic record, 1990–2004. Journal of Marine Research, 2009, 67, 361-384.	0.3	25
57	Enhanced production of Labrador Sea Water in 2008. Geophysical Research Letters, 2009, 36, .	4.0	133
58	Arctic Ocean Freshwater Changes over the Past 100 Years and Their Causes. Journal of Climate, 2008, 21, 364-384.	3.2	93
59	Evolution of North Atlantic Water Masses Inferred from Labrador Sea Salinity Series. Oceanography, 2008, 21, 30-45.	1.0	30
60	Transformation and Fate of Overflows in the Northern North Atlantic. , 2008, , 505-526.		27
61	The History of the Labrador Sea Water: Production, Spreading, Transformation and Loss. , 2008, , 569-612.		24
62	Deep-ocean flow-speed changes linked to the NAO through Labrador Sea convection. PAGES News, 2008, 16, 32-33.	0.3	0
63	Spreading of the Labrador Sea Water to the Irminger and Iceland basins. Geophysical Research Letters, 2007, 34, .	4.0	113
64	North Atlantic climate and deepâ€ocean flow speed changes during the last 230 years. Geophysical Research Letters, 2007, 34, .	4.0	53
65	Transformation of the Labrador Sea Water in the subpolar North Atlantic. Geophysical Research Letters, 2007, 34, .	4.0	64
66	Current estimates of freshwater flux through Arctic and subarctic seas. Progress in Oceanography, 2007, 73, 210-230.	3.2	234
67	Modelling hydrographic changes in the Labrador sea over the past five decades. Progress in Oceanography, 2007, 73, 406-426.	3.2	8
68	Changing freshwater content: Insights from the subpolar North Atlantic and new oceanographic challenges. Progress in Oceanography, 2007, 73, 203-209.	3.2	11
69	Hydrographic changes in the Labrador Sea, 1960–2005. Progress in Oceanography, 2007, 73, 242-276.	3.2	288
70	Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dynamics, 2007, 57, 223-235.	2.2	124
71	Arctic Ocean change heralds North Atlantic freshening. Geophysical Research Letters, 2005, 32, .	4.0	81
72	Deep water changes at the western boundary of the subpolar North Atlantic during 1996 to 2001. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1033-1056.	1.4	93

#	Article	IF	CITATIONS
73	Distributions of Calanus spp. and other mesozooplankton in the Labrador Sea in relation to hydrography in spring and summer (1995–2000). Progress in Oceanography, 2003, 59, 1-30.	3.2	69
74	A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 2003, 426, 826-829.	27.8	486
75	Deep-ocean temperature variations and implications for errors in seafloor heat flow determinations. Journal of Geophysical Research, 2003, 108, .	3.3	28
76	Time series study of CFC concentrations in the Labrador Sea during deep and shallow convection regimes (1991–2000). Journal of Geophysical Research, 2003, 108, .	3.3	50
77	Recent changes in the North Atlantic. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1917-1934.	3.4	44
78	Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 1819-1835.	1.4	248
79	Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 2002, 416, 832-837.	27.8	483
80	Chapter 7.3 The world during WOCE. International Geophysics, 2001, 77, 557-583.	0.6	7
81	The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: the MSU view. Part I: data, methodology and temporal behaviour. International Journal of Climatology, 2001, 21, 419-437.	3.5	26
82	Some peculiarities of the sea surface temperature in the vicinity of western boundary currents. Physical Oceanography, 1995, 6, 465-469.	0.9	1
83	Characteristics of the variability of the surface temperature in the Atlantic Ocean on various spatial-temporal scales. Physical Oceanography, 1993, 4, 45-52.	0.9	2