Zhihui Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734495/publications.pdf

Version: 2024-02-01

		147801	2	14800
50	4,035	31		47
papers	citations	h-index		g-index
50	50	50		3470
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Robust microhoneycomb-like nanofibrous aerogels derived from cellulose and lignin as highly efficient, low-resistant and anti-clogging air filters. Journal of Membrane Science, 2022, 642, 119977.	8.2	18
2	Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106814.	7.6	50
3	Biomimetic Lightâ€Driven Aerogel Passive Pump for Volatile Organic Pollutant Removal. Advanced Science, 2022, 9, e2105819.	11.2	13
4	Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Composites Part B: Engineering, 2022, 235, 109800.	12.0	67
5	MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon, 2022, 194, 257-266.	10.3	85
6	Bioinspired celluloseâ€integrated MXeneâ€based hydrogels for multifunctional sensing and electromagnetic interference shielding. , 2022, 1, 495-506.		36
7	Nanocelluloseâ€assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3, 582-607.	10.7	21
8	Sustainableâ€Macromoleculeâ€Assisted Preparation of Crossâ€linked, Ultralight, Flexible Graphene Aerogel Sensors toward Lowâ€Frequency Strain/Pressure to Highâ€Frequency Vibration Sensing. Small, 2022, 18, e2202047.	10.0	20
9	Biomass-derived porous carbon for microwave absorption. Materials Chemistry and Physics, 2022, 289, 126437.	4.0	29
10	Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottomâ€Up Fabrication. Advanced Materials, 2021, 33, e2000657.	21.0	139
11	Nanocellulose-lysozyme colloidal gels via electrostatic complexation. Carbohydrate Polymers, 2021, 251, 117021.	10.2	22
12	Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption at low thickness. Inorganic Chemistry Frontiers, 2021, 8, 1810-1818.	6.0	16
13	Bioresponsive Hybrid Nanofibers Enable Controlled Drug Delivery through Glass Transition Switching at Physiological Temperature. ACS Applied Bio Materials, 2021, 4, 4271-4279.	4.6	24
14	Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials. ACS Nano, 2021, 15, 7451-7462.	14.6	63
15	High-Mass Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Absolute Quantitation of Noncovalent Protein–Protein Binding Interactions. Analytical Chemistry, 2021, 93, 10982-10989.	6.5	4
16	Bioprocess-inspired synthesis of printable, self-healing mineral hydrogels for rapidly responsive, wearable ionic skin. Chemical Engineering Journal, 2021, 424, 130549.	12.7	33
17	Ultrafine Cellulose Nanofiberâ€Assisted Physical and Chemical Crossâ€Linking of MXene Sheets for Electromagnetic Interference Shielding. Small Methods, 2021, 5, e2100889.	8.6	59
18	Ultrafine Cellulose Nanofiberâ€Assisted Physical and Chemical Crossâ€Linking of MXene Sheets for Electromagnetic Interference Shielding (Small Methods 12/2021). Small Methods, 2021, 5, .	8.6	0

#	Article	IF	CITATIONS
19	Polymer/MOF-derived multilayer fibrous membranes for moisture-wicking and efficient capturing both fine and ultrafine airborne particles. Separation and Purification Technology, 2020, 235, 116183.	7.9	64
20	Frequency-selective-surface based sandwich structure for both effective loadbearing and customizable microwave absorption. Composite Structures, 2020, 235, 111792.	5.8	36
21	Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 17969-17979.	10.3	64
22	Polymer-Assisted Fabrication of Silver Nanowire Cellular Monoliths: Toward Hydrophobic and Ultraflexible High-Performance Electromagnetic Interference Shielding Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38584-38592.	8.0	38
23	Dual-porous cellulose nanofibril aerogels <i>via</i> modular drying and cross-linking. Nanoscale, 2020, 12, 7383-7394.	5.6	37
24	Flexible and Ultrathin Waterproof Cellular Membranes Based on Highâ€Conjunction Metalâ€Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding. Advanced Materials, 2020, 32, e1908496.	21.0	234
25	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	11.2	303
26	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	14.6	254
27	Wood – Base material for Optical Elements for Terahertz Waves?. , 2020, , .		0
28	Highly porous polymer nanofibrous aerogels cross-linked via spontaneous inter-fiber stereocomplexation and their potential for capturing ultrafine airborne particles. Polymer, 2019, 179, 121649.	3.8	21
29	Robust Lignin-Based Aerogel Filters: High-Efficiency Capture of Ultrafine Airborne Particulates and the Mechanism. ACS Sustainable Chemistry and Engineering, 2019, 7, 6959-6968.	6.7	59
30	Graphene-based nanocomposite strain sensor response to ultrasonic guided waves. Composites Science and Technology, 2019, 174, 42-49.	7.8	21
31	Mussel-inspired approach to cross-linked functional 3D nanofibrous aerogels for energy-efficient filtration of ultrafine airborne particles. Applied Surface Science, 2019, 479, 700-708.	6.1	28
32	Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Composites Part B: Engineering, 2019, 165, 671-678.	12.0	72
33	Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon, 2019, 143, 743-751.	10.3	33
34	Ultralight and Highly Elastic Graphene/Lignin-Derived Carbon Nanocomposite Aerogels with Ultrahigh Electromagnetic Interference Shielding Performance. ACS Applied Materials & Description (Interfaces, 2018, 10, 8205-8213.	8.0	160
35	A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Research, 2018, 11, 3931-3942.	10.4	22
36	Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance. Carbon, 2018, 140, 227-236.	10.3	87

#	Article	IF	CITATIONS
37	Graphene nanoscroll/nanosheet aerogels with confined SnS2 nanosheets: simultaneous wrapping and bridging for high-performance lithium-ion battery anodes. Electrochimica Acta, 2018, 278, 156-164.	5.2	45
38	Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization. Composites Science and Technology, 2017, 145, 10-14.	7.8	80
39	Broadband dynamic responses of flexible carbon black/poly (vinylidene fluoride) nanocomposites: A sensitivity study. Composites Science and Technology, 2017, 149, 246-253.	7.8	37
40	Effective fabrication of flexible negative refractive index metamaterials using a simple screen printing method. Journal of Materials Chemistry C, 2017, 5, 5378-5386.	5.5	6
41	Flexible and easy-to-tune broadband electromagnetic wave absorber based on carbon resistive film sandwiched by silicon rubber/multi-walled carbon nanotube composites. Carbon, 2017, 121, 544-551.	10.3	42
42	Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring. Ultrasonics, 2017, 78, 166-174.	3.9	28
43	Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale, 2017, 9, 17396-17404.	5.6	70
44	Ultralight and Flexible Polyurethane/Silver Nanowire Nanocomposites with Unidirectional Pores for Highly Effective Electromagnetic Shielding. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32211-32219.	8.0	158
45	Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites. Small, 2017, 13, 1701388.	10.0	163
46	Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites. Carbon, 2017, 121, 490-501.	10.3	46
47	Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding. Advanced Functional Materials, 2016, 26, 303-310.	14.9	697
48	A coatable, light-weight, fast-response nanocomposite sensor for the <i>in situ </i> acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves. Smart Materials and Structures, 2016, 25, 065005.	3.5	25
49	Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777.	10.3	301
50	Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites. Carbon, 2015, 84, 327-334.	10.3	105