Xiaolin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734181/publications.pdf

Version: 2024-02-01

38 papers	1,708 citations	20 h-index	315739 38 g-index
38	38	38	2403
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Temperature-dependent changes in active nitrifying communities in response to field fertilization legacy. Biology and Fertility of Soils, 2021, 57, 1-14.	4.3	6
2	High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 2021, 27, 2061-2075.	9.5	77
3	Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agriculture, Ecosystems and Environment, 2021, 313, 107389.	5. 3	34
4	Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol. PLoS ONE, 2020, 15, e0230593.	2.5	17
5	Spatiotemporal differences in the arbuscular mycorrhizal fungi communities in soil and roots in response to long-term organic compost inputs in an intensive agricultural cropping system on the North China Plain. Journal of Soils and Sediments, 2019, 19, 2520-2533.	3.0	21
6	Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. Journal of Plant Interactions, 2019, 14, 10-20.	2.1	14
7	Nutrient and dry matter accumulation in different generations of banana at different growth stages. Fruits, 2019, 74, 82-92.	0.4	4
8	Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agriculture, Ecosystems and Environment, 2018, 260, 58-69.	5. 3	125
9	Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau. Mycorrhiza, 2018, 28, 605-619.	2.8	19
10	Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Scientific Reports, 2017, 7, 3067.	3.3	39
11	Effect of interfacial enhancing on morphology, mechanical, and rheological properties of polypropyleneâ€ground tire rubber powder blends. Journal of Applied Polymer Science, 2017, 134, 45354.	2.6	12
12	Cropping System Conversion led to Organic Carbon Change in China's Mollisols Regions. Scientific Reports, 2017, 7, 18064.	3.3	27
13	Abdominal obesity is strongly associated with Cardiovascular Disease and its Risk Factors in Elderly and very Elderly Community-dwelling Chinese. Scientific Reports, 2016, 6, 21521.	3.3	85
14	Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Scientific Reports, 2016, 6, 24902.	3.3	87
15	Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537, 671-674.	27.8	417
16	Higher prevalence of elevated LDL-C than non-HDL-C and low statin treatment rate in elderly community-dwelling Chinese with high cardiovascular risk. Scientific Reports, 2016, 6, 34268.	3.3	6
17	Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg2+ and oxytetracycline. Analytical and Bioanalytical Chemistry, 2016, 408, 2955-2962.	3.7	32
18	Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the <scp>T</scp> ibetan <scp>P</scp> lateau. Environmental Microbiology, 2015, 17, 2841-2857.	3.8	64

#	Article	IF	Citations
19	Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensively managed agricultural ecosystems. Journal of Soils and Sediments, 2015, 15, 1200-1211.	3.0	15
20	Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza, 2014, 24, 95-107.	2.8	73
21	Facilitation of seedling growth and nutrient uptake by indigenous arbuscular mycorrhizal fungi in intensive agroecosytems. Biology and Fertility of Soils, 2014, 50, 381-394.	4.3	10
22	Integrated management systems and N fertilization: effect on soil organic matter in rice-rapeseed rotation. Plant and Soil, 2013, 372, 53-63.	3.7	25
23	Allocation and dynamics of assimilated carbon in rice-soil system depending on water management. Plant and Soil, 2013, 363, 273-285.	3.7	54
24	Adsorption Isotherms, Kinetics, and Desorption of 1,2-Dichloroethane on Chromium-Based Metal Organic Framework MIL-101. Separation Science and Technology, 2013, 48, 1479-1489.	2.5	49
25	Effect of Inoculation with the Arbuscular Mycorrhizal Fungus <i>Glomus Intraradices</i> on the Root-Knot Nematode <i>Meloidogyne Incognita</i> in Cucumber. Journal of Plant Nutrition, 2009, 32, 967-979.	1.9	12
26	Response of Two Maize Inbred Lines with Contrasting Phosphorus Efficiency and Root Morphology to Mycorrhizal Colonization at Different Soil Phosphorus Supply Levels. Journal of Plant Nutrition, 2008, 31, 1059-1073.	1.9	22
27	Pungency of Spring Onion as Affected by Inoculation with Arbuscular Mycorrhizal Fungi and Sulfur Supply. Journal of Plant Nutrition, 2007, 30, 1023-1034.	1.9	22
28	Stability and Drug Loading of Spontaneous Vesicles of Comb-Like PEG Derivates. Macromolecular Rapid Communications, 2007, 28, 660-665.	3.9	20
29	Influence of Nitrogen and Sulfur Fertilizers and Inoculation with Arbuscular Mycorrhizal Fungi on Yield and Pungency of Spring Onion. Journal of Plant Nutrition, 2006, 29, 1767-1778.	1.9	19
30	Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 2006, 28, 111-119.	3.4	74
31	Effects of Arbuscular Mycorrhizal Fungi and Ammonium: Nitrate Ratios on Growth and Pungency of Onion Seedlings. Journal of Plant Nutrition, 2006, 29, 1047-1059.	1.9	14
32	Influence of Three Arbuscular Mycorrhizal Fungi and Phosphorus on Growth and Nutrient Status of Taro. Communications in Soil Science and Plant Analysis, 2005, 36, 2383-2396.	1.4	8
33	Control of Fusarium Wilt of Cucumber Seedlings by Inoculation with an Arbuscular Mycorrhical Fungus. Journal of Plant Nutrition, 2005, 28, 1961-1974.	1.9	44
34	Influence of Potassium Supply on Growth and Uptake of Nitrogen, Phosphorus, and Potassium by Three Ectomycorrhizal Fungal Isolates In Vitro. Journal of Plant Nutrition, 2005, 28, 271-284.	1.9	3
35	Effects of Different Nitrogen Rates on Open-Field Vegetable Growth and Nitrogen Utilization in the North China Plain. Communications in Soil Science and Plant Analysis, 2004, 35, 1725-1740.	1.4	14
36	Establishment of monoxenic culture between the arbuscular mycorrhizal fungus Glomus sinuosum and Ri T-DNA-transformed carrot roots. Plant and Soil, 2004, 261, 239-244.	3.7	7

XIAOLIN LI

#	Article	IF	CITATION
37	Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 2004, 261, 219-229.	3.7	88
38	Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant and Soil, 2004, 262, 351-361.	3.7	49