Saniya LeBlanc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Printing thermoelectric inks toward next-generation energy and thermal devices. Chemical Society Reviews, 2022, 51, 485-512.	18.7	39
2	Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. Journal of the European Ceramic Society, 2022, 42, 3049-3088.	2.8	62
3	Additive Manufacturing of Bulk Thermoelectric Architectures: A Review. Energies, 2022, 15, 3121.	1.6	9
4	Distributed and localized cooling with thermoelectrics. Joule, 2021, 5, 748-751.	11.7	34
5	Nano―and Microâ€Structures Formed during Laser Processing of Selenium Doped Bismuth Telluride. Advanced Materials Interfaces, 2021, 8, 2100185.	1.9	9
6	Sterically Stabilized Multilayer Graphene Nanoshells for Inkjet Printed Resistors. Electronic Materials, 2021, 2, 394-412.	0.9	0
7	Examining community solar programs to understand accessibility and investment: Evidence from the U.S Energy Policy, 2021, 159, 112600.	4.2	5
8	Ink synthesis and inkjet printing of electrostatically stabilized multilayer graphene nanoshells. Journal of Colloid and Interface Science, 2020, 566, 454-462.	5.0	15
9	The Influence of Leg Shape on Thermoelectric Performance Under Constant Temperature and Heat Flux Boundary Conditions. Frontiers in Materials, 2020, 7, .	1.2	21
10	Meso-, micro-, and nano-structures induced in bismuth telluride thermoelectric materials by laser additive manufacturing. , 2020, , .		2
11	The impact of thermoelectric leg geometries on thermal resistance and power output. Journal of Applied Physics, 2019, 126, .	1.1	55
12	Electric Field Assisted Self-Assembly of Viruses into Colored Thin Films. Nanomaterials, 2019, 9, 1310.	1.9	5
13	Pulsed laser melting of bismuth telluride thermoelectric materials. Journal of Manufacturing Processes, 2019, 43, 35-46.	2.8	23
14	Laser additive manufacturing of powdered bismuth telluride. Journal of Materials Research, 2018, 33, 4031-4039.	1.2	23
15	Selective laser melting of half-Heusler thermoelectric materials. , 2018, , .		2
16	Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder. Journal of Manufacturing Processes, 2017, 25, 411-417.	2.8	43
17	Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. Journal of Applied Polymer Science, 2017, 134, .	1.3	90
18	Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices. Materials Letters, 2016, 185, 598-602.	1.3	46

SANIYA LEBLANC

#	Article	IF	CITATIONS
19	Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive. Journal of Electronic Materials, 2016, 45, 1751-1761.	1.0	38
20	Power density optimization for micro thermoelectric generators. Energy, 2015, 93, 2006-2017.	4.5	76
21	Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustainable Materials and Technologies, 2014, 1-2, 26-35.	1.7	192
22	Material and manufacturing cost considerations for thermoelectrics. Renewable and Sustainable Energy Reviews, 2014, 32, 313-327.	8.2	386
23	Reply to the †comment on "\$ per W metrics for thermoelectric power generation: beyond ZTâ€â€™ by G. Nunes, Jr, Energy Environ. Sci., 2014, 7, DOI: 10.1039/C3EE43700K. Energy and Environmental Science, 2014, 7, 3441-3442.	15.6	4
24	\$ per W metrics for thermoelectric power generation: beyond ZT. Energy and Environmental Science, 2013, 6, 2561-2571.	15.6	201
25	Modeling and Optimization of Small Thermoelectric Generators for Low-Power Electronics. , 2013, , .		4
26	Electrothermal phenomena in zinc oxide nanowires and contacts. Applied Physics Letters, 2012, 100, 163105.	1.5	13
27	Simulated and experimental dynamic response characterization of an electromagnetic microvalve. Sensors and Actuators A: Physical, 2008, 143, 399-408.	2.0	37
28	Processing Parameters for Selective Laser Sintering or Melting of Oxide Ceramics. , 0, , .		8
29	Laser Additive Manufacturing Process Development for Bismuth Telluride Thermoelectric Material. Journal of Materials Engineering and Performance, 0, , .	1.2	2