
Claudio Altomare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734097/publications.pdf Version: 2024-02-01

CLAUDIO ALTOMARE

#	Article	IF	CITATIONS
1	Potential of Trichoderma spp. for Biocontrol of Aflatoxin-Producing Aspergillus flavus. Toxins, 2022, 14, 86.	3.4	18
2	Mycotoxins and Mycotoxigenic Fungi: Risk and Management. A Challenge for Future Global Food Safety and Security. , 2021, , 64-93.		15
3	Degradation of Aflatoxin B1 by a Sustainable Enzymatic Extract from Spent Mushroom Substrate of Pleurotus eryngii. Toxins, 2020, 12, 49.	3.4	29
4	Biochar and hydrochar from waste biomass promote the growth and enzyme activity of soil-resident ligninolytic fungi. Heliyon, 2019, 5, e02051.	3.2	12
5	Aflatoxin B1-Adsorbing Capability of Pleurotus eryngii Mycelium: Efficiency and Modeling of the Process. Frontiers in Microbiology, 2019, 10, 1386.	3.5	17
6	In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiology Letters, 2018, 365, .	1.8	19
7	Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: insight into the genetic endowment of a multi-target biocontrol strain. BMC Genomics, 2018, 19, 662.	2.8	41
8	Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant Cell Reports, 2017, 36, 621-631.	5.6	78
9	Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PLoS ONE, 2017, 12, e0182574.	2.5	35
10	Long Chain Alcohols Produced by Trichoderma citrinoviride Have Phagodeterrent Activity against the Bird Cherry-Oat Aphid Rhopalosiphum padi. Frontiers in Microbiology, 2016, 7, 297.	3.5	22
11	HOW FUNGI INTERACT WITH NEMATODE TO ACTIVATE THE PLANT DEFENCE RESPONSE TO TOMATO PLANTS. Communications in Agricultural and Applied Biological Sciences, 2014, 79, 357-63.	0.0	6
12	Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control, 2013, 67, 397-408.	3.0	57
13	Assessing potential cytotoxicity of biocontrol microorganisms using invertebrate assays , 2012, , 240-255.		2
14	Beneficial Soil Microorganisms, an Ecological Alternative for Soil Fertility Management. Sustainable Agriculture Reviews, 2011, , 161-214.	1.1	38
15	Investigations of Fungal Secondary Metabolites with Potential Anticancer Activity. Journal of Natural Products, 2010, 73, 969-971.	3.0	48
16	Development of a PCR-based assay for the detection of Fusarium oxysporum strain FT2, a potential mycoherbicide of Orobanche ramosa. Biological Control, 2009, 50, 78-84.	3.0	11
17	Bisorbicillinoids Produced by the Fungus Trichoderma citrinoviride Affect Feeding Preference of the Aphid Schizaphis graminum. Journal of Chemical Ecology, 2009, 35, 533-541.	1.8	36
18	Citrantifidiene and Citrantifidiol: Bioactive Metabolites Produced by Trichoderma citrinoviride with Potential Antifeedant Activity toward Aphids. Journal of Agricultural and Food Chemistry, 2008, 56, 3569-3573.	5.2	32

CLAUDIO ALTOMARE

#	Article	IF	CITATIONS
19	Inhibition of Species of the <i>Aspergillus</i> Section <i>Nigri</i> and Ochratoxin A Production in Grapes by Fusapyrone. Applied and Environmental Microbiology, 2008, 74, 2248-2253.	3.1	10
20	Detection of fungal metabolites of various Trichoderma species by the aphid Schizaphis graminum. Entomologia Experimentalis Et Applicata, 2007, 122, 77-86.	1.4	16
21	Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina) Tj ETQq1 1 ().784314 r 3.6	gBT /Overloci
22	Characterization of Italian Isolates of Fusarium semitectum from Alfalfa (Medicago sativa L.) by AFLP Analysis, Morphology, Pathogenicity and Toxin Production. Journal of Phytopathology, 2006, 154, 454-460.	1.0	13
23	Structureâ^'Activity Relationships of Derivatives of Fusapyrone, an Antifungal Metabolite ofFusarium semitectum. Journal of Agricultural and Food Chemistry, 2004, 52, 2997-3001.	5.2	37
24	Isolation and characterisation of a trichodiene synthase homologous gene in Trichoderma harzianum. Physiological and Molecular Plant Pathology, 2004, 65, 11-20.	2.5	32
25	Interactions between Onychiurus armatus and Trichoderma harzianum in take-all disease suppression in a simple experimental system. European Journal of Soil Biology, 2002, 38, 71-74.	3.2	7
26	Biological Characterization of Fusapyrone and Deoxyfusapyrone, Two Bioactive Secondary Metabolites ofFusarium semitectum. Journal of Natural Products, 2000, 63, 1131-1135.	3.0	81
27	Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus <i>Trichoderma harzianum</i> Rifai 1295-22. Applied and Environmental Microbiology, 1999, 65, 2926-2933.	3.1	641
28	High performance liquid chromatography for the analysis of fusapyrone and deoxyfusapyrone, two antifungal α-pyrones fromFusarium semitectum. Natural Toxins, 1999, 7, 133-137.	1.0	16
29	Taxonomic relationships among the toxigenic species <i>Fusarium acuminatum</i> , <i>Fusarium sporotrichioides</i> and <i>Fusarium tricinctum</i> by isozyme analysis and RAPD assay. Canadian Journal of Botany, 1997, 75, 1674-1684.	1.1	36
30	Fusapyrone and Deoxyfusapyrone from Fusarium semitectumi Production and Biological Activities. Cereal Research Communications, 1997, 25, 349-351.	1.6	6
31	Clustering of Toxigenic Fungi Determined by rDNA Sequences. Cereal Research Communications, 1997, 25, 259-264.	1.6	Ο
32	Molecular and Biochemical Characterization of Two Atypical Toxigenic Populations of Fusarium Camptoceras. Cereal Research Communications, 1997, 25, 607-608.	1.6	0
33	Production of neosolaniol byFusarium tumidum. Mycopathologia, 1995, 130, 179-184.	3.1	11
34	Production of type A trichothecenes and enniatin B byFusarium sambucinum Fuckel sensu lato. Mycopathologia, 1995, 129, 177-181.	3.1	54
35	Paracelsin E, a New Peptaibol from Trichoderma saturnisporum. Journal of Natural Products, 1995, 58, 1745-1748.	3.0	20
36	Fusarium species associated with banana fruit rot and their potential toxigenicity. Mycotoxin Research, 1995, 11, 93-98.	2.3	8

CLAUDIO ALTOMARE

#	Article	IF	CITATIONS
37	Fusapyrone and deoxyfusapyrone, two antifungal α-Pyrones FromFusarium semitectum. Natural Toxins, 1994, 2, 4-13.	1.0	47
38	Detection of peptaibols and their hydrolysis products in cultures of <i>Trichoderma</i> species. Natural Toxins, 1994, 2, 360-365.	1.0	1
39	Detection of peptaibols and their hydrolysis products in cultures of Trichoderma species. Natural Toxins, 1994, 2, 360-5.	1.0	8
40	Occurrence and toxicity ofFusarium subglutinans from Peruvian maize. Mycopathologia, 1993, 122, 185-190.	3.1	64
41	Natural occurrence of beauvericin in preharvest Fusarium subglutinans infected corn ears in Poland. Journal of Agricultural and Food Chemistry, 1993, 41, 2149-2152.	5.2	115
42	Cultural and toxigenic variability in Fusarium acuminatum. Mycological Research, 1992, 96, 518-523.	2.5	49
43	Pathogenicity of Fusarium graminearum Chemotypes Towards Corn, Wheat, Triticale and Rye. Journal of Phytopathology, 1990, 130, 197-204.	1.0	11
44	Chemotaxonomic Observations on Zearalenone and Trichothecene Production by Gibberella zeae from Cereals in Southern Italy. Mycologia, 1988, 80, 892.	1.9	15
45	Chemotaxonomic Observations on Zearalenone and Trichothecene Production by <i>Gibberella Zeae</i> from Cereals in Southern Italy. Mycologia, 1988, 80, 892-895.	1.9	31
46	Chemotaxonomic observations on zearalenone and trichotecenes production byGibberella zeae from cereals in Southern Italy. Mycotoxin Research, 1987, 3, 9-10.	2.3	7