Olaf S Bánki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/573388/publications.pdf

Version: 2024-02-01

516710 580821 4,592 34 16 citations h-index papers

25 g-index 36 36 36 7811 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Relationships between species richness and ecosystem services in Amazonian forests strongly influenced by biogeographical strata and forest types. Scientific Reports, 2022, 12, 5960.	3.3	1
2	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
3	Towards a global list of accepted species III. Independence and stakeholder inclusion. Organisms Diversity and Evolution, 2021, 21, 631-643.	1.6	13
4	Towards a global list of accepted species IV: Overcoming fragmentation in the governance of taxonomic lists. Organisms Diversity and Evolution, 2021, 21, 645-655.	1.6	12
5	Towards a global list of accepted species VI: The Catalogue of Life checklist. Organisms Diversity and Evolution, 2021, 21, 677-690.	1.6	27
6	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
7	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
8	Principles for creating a single authoritative list of the world's species. PLoS Biology, 2020, 18, e3000736.	5.6	61
9	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
10	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
11	Scaling issues of neutral theory reveal violations of ecological equivalence for dominant Amazonian tree species. Ecology Letters, 2019, 22, 1072-1082.	6.4	7
12	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
13	Panâ€tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
14	Unblocking the flow of biodiversity data for decision-making in Africa. Biological Conservation, 2017, 213, 335-340.	4.1	64
15	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
16	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
17	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	2.4	45
18	Meeting Report: GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013). Standards in Genomic Sciences, 2014, 9, 585-598.	1.5	8

#	Article	IF	CITATIONS
19	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	27.8	909
20	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
21	LifeWatch \hat{a} \in A European e-Science and observatory infrastructure supporting access and use of biodiversity and ecosystem data. Nature Precedings, 2011, , .	0.1	2
22	A model of botanical collectors' behavior in the field: Never the same species twice. American Journal of Botany, 2011, 98, 31-37.	1.7	62
23	Engaging the broader community in biodiversity research: the concept of the COMBER pilot project for divers in ViBRANT. ZooKeys, 2011, 150, 211-229.	1.1	17
24	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	9.5	74
25	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	12.6	1,443
26	Towards Interlinked FAIR Biodiversity Knowledge: The BiCIKL perspective. Biodiversity Information Science and Standards, 0, 5, .	0.0	5
27	Catalogue of Life Plus: innovating the CoL systems as a foundation for aÂclearinghouse for names and taxonomy. Biodiversity Information Science and Standards, 0, 2, e26922.	0.0	5
28	Catalogue of Life Plus: A collaborative project to complete the checklist of the world's species. Biodiversity Information Science and Standards, 0, 3, .	0.0	6
29	Landscape Analysis for the Specimen Data Refinery. Research Ideas and Outcomes, 0, 6, .	1.0	15
30	Supporting 21st Century Taxonomy and Society Through Collaborative Cataloguing of the World's Species. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
31	Biological & Dutch case. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
32	Use cases for Taxonomic Name Services. Biodiversity Information Science and Standards, 0, 3, .	0.0	0
33	Biodiversity Community Integrated Knowledge Library (BiCIKL). Research Ideas and Outcomes, 0, 8, .	1.0	15
34	Sharing taxonomic expertise between natural history collections using image recognition. Research Ideas and Outcomes, 0, 8, .	1.0	4