
Giancarlo Sorrentino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5733850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insight into NH3-H2 mutual inhibiting effects and dynamic regimes at low-intermediate temperatures. Combustion and Flame, 2022, 243, 111957.	2.8	22
2	Ammonia/Methane combustion: Stability and NOx emissions. Combustion and Flame, 2022, 241, 112071.	2.8	91
3	Thermo-chemical manifold reduction for tabulated chemistry modeling. Temperature and dilution constraints for smooth combustion reactors. Proceedings of the Combustion Institute, 2021, 38, 5393-5402.	2.4	12
4	Influence of water addition on MILD ammonia combustion performances and emissions. Proceedings of the Combustion Institute, 2021, 38, 5147-5154.	2.4	69
5	Alcohols as Energy Carriers in MILD Combustion. Energy & amp; Fuels, 2021, 35, 7253-7264.	2.5	19
6	Mini-Review: Heat Transfer Mechanisms in MILD Combustion Systems. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	2
7	MILD Combustion and Biofuels: A Minireview. Energy & amp; Fuels, 2021, 35, 19901-19919.	2.5	31
8	The role of dilution level and canonical configuration in the modeling of MILD combustion systems with internal recirculation. Fuel, 2020, 264, 116840.	3.4	24
9	Diffusion Ignition Processes in MILD Combustion: A Mini-Review. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	14
10	Evaluation of Modeling Approaches for MILD Combustion Systems With Internal Recirculation. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	11
11	Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions. Applied Energy, 2019, 254, 113676.	5.1	96
12	Fuel and thermal load flexibility of a MILD burner. Proceedings of the Combustion Institute, 2019, 37, 4547-4554.	2.4	44
13	Numerical Investigation of Moderate or Intense Low-Oxygen Dilution Combustion in a Cyclonic Burner Using a Flamelet-Generated Manifold Approach. Energy & Fuels, 2018, 32, 10242-10255.	2.5	27
14	Influence of preheating and thermal power on cyclonic burner characteristics under mild combustion. Fuel, 2018, 233, 207-214.	3.4	51
15	Numerical Study of a Cyclonic Combustor under Moderate or Intense Low-Oxygen Dilution Conditions Using Non-adiabatic Tabulated Chemistry. Energy & Fuels, 2018, 32, 10256-10265.	2.5	12
16	Small size burner combustion stabilization by means of strong cyclonic recirculation. Proceedings of the Combustion Institute, 2017, 36, 3361-3369.	2.4	34
17	Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions. Energy, 2017, 137, 1167-1174.	4.5	53
18	An experimental and numerical study of MILD combustion in a Cyclonic burner. Energy Procedia, 2017, 120. 649-656.	1.8	20

GIANCARLO SORRENTINO

#	Article	IF	CITATIONS
19	Distributed combustion in a cyclonic burner. AIP Conference Proceedings, 2017, , .	0.3	1
20	Numerical investigation of the ignition and annihilation of CH4/N2/O2 mixtures under MILD operative conditions with detailed chemistry. Combustion Theory and Modelling, 2017, 21, 120-136.	1.0	11
21	Thermo-kinetic instabilities in model reactors. Examples in experimental tests. AIP Conference Proceedings, 2017, , .	0.3	0
22	Highly Preheated Lean Combustion. , 2016, , 63-109.		6
23	Study of aerodynamic performances of different wind tunnel configurations and air inlet velocities, using computational fluid dynamics (CFD). Computers and Electronics in Agriculture, 2016, 125, 137-148.	3.7	29
24	Experimental study of the effect of CO2 on propane oxidation in a Jet Stirred Flow Reactor. Fuel, 2016, 184, 876-888.	3.4	19
25	The Effect of Diluent on the Sustainability of MILD Combustion in a Cyclonic Burner. Flow, Turbulence and Combustion, 2016, 96, 449-468.	1.4	56
26	H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons. Flow, Turbulence and Combustion, 2016, 96, 433-448.	1.4	49
27	CO 2 and H 2 O effect on propane auto-ignition delay times under mild combustion operative conditions. Combustion and Flame, 2015, 162, 533-543.	2.8	95
28	Dynamic Behaviors in Methane MILD and Oxy-Fuel Combustion. Chemical Effect of CO ₂ . Energy & Fuels, 2015, 29, 1978-1986.	2.5	76
29	Effects of mixture composition, dilution level and pressure on auto-ignition delay times of propane mixtures. Chemical Engineering Journal, 2015, 277, 324-333.	6.6	18
30	Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste. Waste Management, 2015, 44, 125-134.	3.7	10
31	Development of a Novel Cyclonic Flow Combustion Chamber for Achieving MILD/Flameless Combustion. Energy Procedia, 2015, 66, 141-144.	1.8	18
32	Hemicellulose, cellulose and lignin interactions on Arundo donax steam assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 138-146.	2.6	62
33	Transient inception of MILD combustion in hot diluted diffusion ignition (HDDI) regime: A numerical study. Proceedings of the Combustion Institute, 2013, 34, 3239-3247.	2.4	24
34	Pyrolitic and Oxidative Structures in Hot Oxidant Diluted Oxidant (HODO) MILD Combustion. Combustion Science and Technology, 2012, 184, 1207-1218.	1.2	62
35	MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel. Combustion and Flame, 2012, 159, 1832-1839.	2.8	129
36	Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime. Proceedings of the Combustion Institute, 2009, 32, 3147-3154.	2.4	70