List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5733578/publications.pdf Version: 2024-02-01

TAIZO MORI

#	Article	IF	CITATIONS
1	Effects of shape and solute-solvent compatibility on the efficacy of chirality transfer: Nanoshapes in nematics. Science Advances, 2022, 8, eabl4385.	4.7	11
2	Hyper 100 °C Langmuir–Blodgett (Langmuir–Schaefer) Technique for Organized Ultrathin Film of Polymeric Semiconductors. Langmuir, 2022, 38, 5237-5247.	1.6	14
3	Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. Bulletin of the Chemical Society of Japan, 2022, 95, 889-897.	2.0	10
4	Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface. Langmuir, 2022, 38, 6481-6490.	1.6	2
5	Band mobility exceeding 10 cm2 Vâ^'1 sâ^'1 assessed by field-effect and chemical double doping in semicrystalline polymeric semiconductors. Applied Physics Letters, 2021, 119, 013302.	1.5	8
6	Emission Control by Molecular Manipulation of Doubleâ€Paddled Binuclear Pt ^{II} Complexes at the Airâ€Water Interface. Chemistry - an Asian Journal, 2020, 15, 406-414.	1.7	24
7	Nanoarchitectonics: Supramolecular Chiral Nanoarchitectonics (Adv. Mater. 41/2020). Advanced Materials, 2020, 32, 2070310.	11.1	1
8	Helicity Manipulation of a Double-Paddled Binaphthyl in a Two-Dimensional Matrix Field at the Air–Water Interface. ACS Nano, 2020, 14, 13294-13303.	7.3	16
9	Frontispiece: 2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry - A European Journal, 2020, 26, .	1.7	0
10	Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication. ACS Applied Materials & Interfaces, 2020, 12, 31896-31903.	4.0	36
11	Supramolecular Chiral Nanoarchitectonics. Advanced Materials, 2020, 32, e1905657.	11.1	150
12	2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry - A European Journal, 2020, 26, 6461-6472.	1.7	24
13	3D Porous Liquid Crystal Elastomer Foams Supporting Longâ€ŧerm Neuronal Cultures. Macromolecular Rapid Communications, 2020, 41, 1900585.	2.0	16
14	100 °C-Langmuir–Blodgett Method for Fabricating Highly Oriented, Ultrathin Films of Polymeric Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 56522-56529.	4.0	37
15	Langmuir Nanoarchitectonics from Basic to Frontier. Langmuir, 2019, 35, 3585-3599.	1.6	111
16	Materials nanoarchitectonics at two-dimensional liquid interfaces. Beilstein Journal of Nanotechnology, 2019, 10, 1559-1587.	1.5	31
17	Atom/molecular nanoarchitectonics for devices and related applications. Nano Today, 2019, 28, 100762.	6.2	77
18	Highly Sensitive, Tunable Chirality Amplification through Space Visualized for Gold Nanorods Capped with Axially Chiral Binaphthyl Derivatives. ACS Nano, 2019, 13, 10312-10326.	7.3	32

#	Article	IF	CITATIONS
19	Review of advanced sensor devices employing nanoarchitectonics concepts. Beilstein Journal of Nanotechnology, 2019, 10, 2014-2030.	1.5	37
20	Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. Current Opinion in Colloid and Interface Science, 2019, 44, 1-13.	3.4	15
21	Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. ACS Nano, 2019, 13, 2410-2419.	7.3	34
22	Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95.	2.8	322
23	Construction of Coordination Nanosheets Based on Tris(2,2′-bipyridine)–Iron (Fe ²⁺) Complexes as Potential Electrochromic Materials. ACS Applied Materials & Interfaces, 2019, 11, 11893-11903.	4.0	61
24	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	2.9	17
25	Soft 2D nanoarchitectonics. NPG Asia Materials, 2018, 10, 90-106.	3.8	121
26	Nano Trek Beyond: Driving Nanocars/Molecular Machines at Interfaces. Chemistry - an Asian Journal, 2018, 13, 1266-1278.	1.7	42
27	Dynamic nanoarchitectonics: Supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology. Current Opinion in Colloid and Interface Science, 2018, 35, 68-80.	3.4	25
28	Nanoarchitectonics from Molecular Units to Living reatureâ€Like Motifs. Chemical Record, 2018, 18, 676-695.	2.9	32
29	Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bulletin of the Chemical Society of Japan, 2018, 91, 1075-1111.	2.0	215
30	Molecular rotors confined at an ordered 2D interface. Physical Chemistry Chemical Physics, 2018, 20, 3073-3078.	1.3	38
31	Chirality amplification by desymmetrization of chiral ligand-capped nanoparticles to nanorods quantified in soft condensed matter. Nature Communications, 2018, 9, 3908.	5.8	76
32	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Đimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie, 2018, 130, 9827-9831.	1.6	17
33	Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chemistry - an Asian Journal, 2018, 13, 3366-3377.	1.7	40
34	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie - International Edition, 2018, 57, 9679-9683.	7.2	80
35	Nanoarchitectonics for Hybrid and Related Materials for Bioâ€Oriented Applications. Advanced Functional Materials, 2018, 28, 1702905.	7.8	149
36	Visual Detection of Cesium Ions in Domestic Water Supply or Seawater using a Nano-optode. Bulletin of the Chemical Society of Japan, 2017, 90, 678-683.	2.0	57

#	Article	IF	CITATIONS
37	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Physical Chemistry Chemical Physics, 2017, 19, 23658-23676.	1.3	56
38	pH-Responsive Cotton Effects in the d–d Transition Band of Self-Assembling Copper(II) Complexes with a Cholesteryl-Armed Ligand. Bulletin of the Chemical Society of Japan, 2017, 90, 739-745.	2.0	10
39	Suppression of Myogenic Differentiation of Mammalian Cells Caused by Fluidity of a Liquid–Liquid Interface. ACS Applied Materials & Interfaces, 2017, 9, 30553-30560.	4.0	54
40	Synthesis of Biocompatible Liquid Crystal Elastomer Foams as Cell Scaffolds for 3D Spatial Cell Cultures. Journal of Visualized Experiments, 2017, , .	0.2	5
41	Effects of Structural Variations on the Cellular Response and Mechanical Properties of Biocompatible, Biodegradable, and Porous Smectic Liquid Crystal Elastomers. Macromolecular Bioscience, 2017, 17, 1600278.	2.1	28
42	Mechanically Induced Opening–Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. ChemPhysChem, 2017, 18, 1470-1474.	1.0	46
43	New developments in 3D liquid crystal elastomers scaffolds for tissue engineering: from physical template to responsive substrate. , 2017, , .		3
44	Effects of size and ligand density on the chirality transfer from chiral-ligand-capped nanoparticles to nematic liquid crystals. , 2017, , .		0
45	Metallic and semiconducting nanoparticles in LCs. Series in Sof Condensed Matter, 2016, , 497-535.	0.1	1
46	Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations. Journal of Nanoparticle Research, 2016, 18, 295.	0.8	58
47	Biocompatible 3D Liquid Crystal Elastomer Cell Scaffolds and Foams with Primary and Secondary Porous Architecture. ACS Macro Letters, 2016, 5, 4-9.	2.3	57
48	Effect of two different size chiral ligand-capped gold nanoparticle dopants on the electro-optic and dielectric dynamics of a ferroelectric liquid crystal mixture. Liquid Crystals, 2016, 43, 695-703.	0.9	34
49	Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands. ACS Nano, 2016, 10, 1552-1564.	7.3	73
50	Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 2015, 88, 1171-1200.	2.0	512
51	Mechanochemical Tuning of the Binaphthyl Conformation at the Air–Water Interface. Angewandte Chemie - International Edition, 2015, 54, 8988-8991.	7.2	97
52	Detection of Ethanol in Alcoholic Beverages or Vapor Phase Using Fluorescent Molecules Embedded in a Nanofibrous Polymer. ACS Applied Materials & Interfaces, 2015, 7, 6189-6194.	4.0	43
53	Discotic Liquid Crystalâ€Functionalized Gold Nanorods: 2―and 3D Selfâ€Assembly and Macroscopic Alignment as well as Increased Charge Carrier Mobility in Hexagonal Columnar Liquid Crystal Hosts Affected by Molecular Packing and i€â€"ï€ Interactions. Advanced Functional Materials, 2015, 25, 1180-1192.	7.8	44
54	Multicolour Fluorescent Memory Based on the Interaction of Hydroxy Terphenyls with Fluoride Anions. Chemistry - A European Journal, 2014, 20, 16293-16300.	1.7	5

#	Article	IF	CITATIONS
55	Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. Thin Solid Films, 2014, 554, 32-40.	0.8	14
56	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. Chemistry of Materials, 2014, 26, 519-532.	3.2	81
57	Detecting, Visualizing, and Measuring Gold Nanoparticle Chirality Using Helical Pitch Measurements in Nematic Liquid Crystal Phases. ACS Nano, 2014, 8, 11966-11976.	7.3	53
58	Intracellular Imaging of Cesium Distribution in <i>Arabidopsis</i> Using Cesium Green. ACS Applied Materials & Interfaces, 2014, 6, 8208-8211.	4.0	32
59	Aligned 1-D Nanorods of a π-Gelator Exhibit Molecular Orientation and Excitation Energy Transport Different from Entangled Fiber Networks. Journal of the American Chemical Society, 2014, 136, 8548-8551.	6.6	86
60	Superhelix Structure in Helical Conjugated Polymers Synthesized in an Asymmetric Reaction Field. Macromolecules, 2013, 46, 6699-6711.	2.2	22
61	25th Anniversary Article: What Can Be Done with the Langmuirâ€Blodgett Method? Recent Developments and its Critical Role in Materials Science. Advanced Materials, 2013, 25, 6477-6512.	11.1	411
62	Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013, 42, 6322.	18.7	376
63	Fullerene Nanoarchitectonics: From Zero to Higher Dimensions. Chemistry - an Asian Journal, 2013, 8, 1662-1679.	1.7	198
64	Langmuir Nanoarchitectonics: One-Touch Fabrication of Regularly Sized Nanodisks at the Air–Water Interface. Langmuir, 2013, 29, 7239-7248.	1.6	49
65	Interfacial Nanoarchitectonics: Lateral and Vertical, Static and Dynamic. Langmuir, 2013, 29, 8459-8471.	1.6	67
66	Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Physical Chemistry Chemical Physics, 2013, 15, 10580.	1.3	311
67	Micrometer-level naked-eye detection of caesium particulates in the solid state. Science and Technology of Advanced Materials, 2013, 14, 015002.	2.8	36
68	One-touch Nanofabrication of Regular-sized Disks through Interfacial Dewetting and Weak Molecular Interaction. Chemistry Letters, 2012, 41, 170-172.	0.7	13
69	Evolution of molecular machines: from solution to soft matter interface. Soft Matter, 2012, 8, 15-20.	1.2	54
70	A Mechanically Controlled Indicator Displacement Assay. Angewandte Chemie - International Edition, 2012, 51, 9643-9646.	7.2	70
71	Mechanical Control of Nanomaterials and Nanosystems. Advanced Materials, 2012, 24, 158-176.	11.1	389
72	Nanosystem Control: Mechanical Control of Nanomaterials and Nanosystems (Adv. Mater. 2/2012). Advanced Materials, 2012, 24, 157-157.	11.1	0

#	Article	IF	CITATIONS
73	Horizontally and vertically aligned helical conjugated polymers: Comprehensive formation mechanisms of helical fibrillar morphologies in orientation-controlled asymmetric reaction fields consisting of chiral nematic liquid crystals. Chemical Science, 2011, 2, 1389.	3.7	25
74	Control of nano/molecular systems by application of macroscopic mechanical stimuli. Chemical Science, 2011, 2, 195-203.	3.7	59
75	Manipulation of thin film assemblies: Recent progress and novel concepts. Current Opinion in Colloid and Interface Science, 2011, 16, 459-469.	3.4	19
76	Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface. Nanoscale Research Letters, 2011, 6, 304.	3.1	24
77	Two-dimensional nanoarchitectonics based on self-assembly. Advances in Colloid and Interface Science, 2010, 154, 20-29.	7.0	146
78	Mechanical Tuning of Molecular Recognition To Discriminate the Single-Methyl-Group Difference between Thymine and Uracil. Journal of the American Chemical Society, 2010, 132, 12868-12870.	6.6	113
79	Formation Mechanism of Helical Polyacetylene with Spiral Morphology in Asymmetric Reaction Field Consisting of Chiral Nematic Liquid Crystal. Macromolecules, 2010, 43, 8363-8372.	2.2	31
80	Macroscopically Aligned Helical Conjugated Polymers in Orientation-Controllable Chiral Nematic Liquid Crystal Field. Macromolecules, 2009, 42, 1817-1823.	2.2	29
81	Helical polyacetylene—Origins and synthesis. Chemical Record, 2008, 8, 395-406.	2.9	62
82	Helicity-Controlled Liquid Crystal Reaction Field Using Nonbridged and Bridged Binaphthyl Derivatives Available for Synthesis of Helical Conjugated Polymers. Macromolecules, 2008, 41, 607-613.	2.2	60
83	Microscopic Orientational Order of Polymer Chains in Helical Polyacetylene Thin Films Studied by Confocal Laser Raman Microscopy. Japanese Journal of Applied Physics, 2006, 45, 1710-1713.	0.8	13
84	Synthesis of Helical Polyacetylene in Chiral Nematic Liquid Crystals Using Crown Ether Type Binaphthyl Derivatives as Chiral Dopants. Journal of the American Chemical Society, 2005, 127, 14647-14654.	6.6	108
85	Synthesis of vertically aligned helical polyacetylene under homeotropic chiral nematic liquid crystal field. Synthetic Metals, 2003, 135-136, 83-84.	2.1	7
86	The significance of nanoparticle shape in chirality transfer to a surrounding nematic liquid crystal reporter medium. Materials Advances, 0, , .	2.6	4