Manussada Ratanasak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5733314/publications.pdf

Version: 2024-02-01

1040056 996975 17 232 9 15 citations h-index g-index papers 17 17 17 260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO ₂ : metal–ligand cooperative catalysis. Chemical Science, 2020, 11, 5669-5675.	7.4	54
2	Synthesis of silyl formates, formamides, and aldehydes via solvent-free organocatalytic hydrosilylation of CO2. Chemical Communications, 2020, 56, 5783-5786.	4.1	37
3	Quaternary Alkyl Ammonium Salt-Catalyzed Transformation of Glycidol to Glycidyl Esters by Transesterification of Methyl Esters. ACS Catalysis, 2018, 8, 1097-1103.	11.2	21
4	Towards the design of new electron donors for Ziegler–Natta catalyzed propylene polymerization using QSPR modeling. Polymer, 2015, 56, 340-345.	3.8	18
5	Roles of malonate donor on activity and stereoselectivity of Ziegler–Natta catalyzed propylene polymerization. Journal of Organometallic Chemistry, 2015, 775, 6-11.	1.8	17
6	Theoretical Study on the C–H Activation of Methane by Liquid Metal Indium: Catalytic Activity of Small Indium Clusters. Journal of Physical Chemistry A, 2019, 123, 8907-8912.	2. 5	16
7	Understanding the roles of novel electron donors in Ziegler–Natta catalyzed propylene polymerization. RSC Advances, 2016, 6, 112776-112783.	3.6	12
8	Deoxygenative CO ₂ conversions with triphenylborane and phenylsilane in the presence of secondary amines or nitrogen-containing aromatics. Green Chemistry, 2022, 24, 2385-2390.	9.0	12
9	Chemoselective Transesterification of Methyl (Meth)acrylates Catalyzed by Sodium(I) or Magnesium(II) Aryloxides. ACS Catalysis, 2021, 11, 199-207.	11.2	10
10	Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes. Journal of Molecular Modeling, 2017, 23, 355.	1.8	8
11	Roles of Salicylate Donors in Enhancement of Productivity and Isotacticity of Ziegler–Natta Catalyzed Propylene Polymerization. Polymers, 2020, 12, 883.	4.5	6
12	Optimizing link atom parameters for DNA QM/MM simulations. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	5
13	Design and prediction of high potent <i>ansa</i> combined DFT calculations and QSPR approach. New Journal of Chemistry, 2021, 45, 8248-8257.	2.8	5
14	Exploring the Reaction Mechanism of Heterobimetallic Nickelâ€Alkali Catalysts for Ethylene Polymerization: Secondaryâ€Metalâ€Ligand Cooperative Catalysis. ChemCatChem, 2022, 14, .	3.7	5
15	A boron-transfer mechanism mediating the thermally induced revival of frustrated carbene–borane pairs from their shelf-stable adducts. Communications Chemistry, 2021, 4, .	4.5	3
16	Ethylene insertion in the presence of new alkoxysilane electron donors for Ziegler-Natta catalyzed polyethylene. Computational and Theoretical Chemistry, 2017, 1112, 10-19.	2.5	2
17	Mechanism of the Asymmetric Dehydrative Allylative Cyclization of Alcohols to Cyclic Ethers Catalyzed by a CpRu Complex of the Chiral Picolinic Acid-Type Ligand, Cl-Naph-PyCOOH: Is a π-Allyl Intermediate Present?. Bulletin of the Chemical Society of Japan, 2021, 94, 440-450.	3.2	1