
Tim I Tree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5733114/publications.pdf Version: 2024-02-01

TIM I TDEE

#	Article	IF	CITATIONS
1	Humoral and cellular immunogenicity to a second dose of COVID-19 vaccine BNT162b2 in people receiving methotrexate or targeted immunosuppression: a longitudinal cohort study. Lancet Rheumatology, The, 2022, 4, e42-e52.	3.9	66
2	A phase 1b open-label dose-finding study of ustekinumab in young adults with type 1 diabetes. Immunotherapy Advances, 2022, 2, Itab022.	3.0	5
3	Immune and Metabolic Effects of Antigen-Specific Immunotherapy Using Multiple β-Cell Peptides in Type 1 Diabetes. Diabetes, 2022, 71, 722-732.	0.6	11
4	Guidelines for standardizing T ell cytometry assays to link biomarkers, mechanisms, and disease outcomes in type 1 diabetes. European Journal of Immunology, 2022, 52, 372-388.	2.9	10
5	The Expression of Active CD11b Monocytes in Blood and Disease Progression in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2022, 23, 3370.	4.1	6
6	INNODIA Master Protocol for the evaluation of investigational medicinal products in children, adolescents and adults with newly diagnosed type 1 diabetes. Trials, 2022, 23, 414.	1.6	12
7	Autoreactive T cell profiles are altered following allogeneic islet transplantation with alemtuzumab induction and re-emerging phenotype is associated with graft function. American Journal of Transplantation, 2021, 21, 1027-1038.	4.7	5
8	Identifying the â€~Achilles heel' of type 1 diabetes. Clinical and Experimental Immunology, 2021, 204, 167-178.	2.6	3
9	Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncology, The, 2021, 22, 765-778.	10.7	491
10	Historical and new insights into pathogenesis of type 1 diabetes (2). Clinical and Experimental Immunology, 2021, 204, 165-166.	2.6	1
11	Mapping T Cell Responses to Native and Neo-Islet Antigen Epitopes in at Risk and Type 1 Diabetes Subjects. Frontiers in Immunology, 2021, 12, 675746.	4.8	8
12	Augmented Expansion of Treg Cells From Healthy and Autoimmune Subjects via Adult Progenitor Cell Co-Culture. Frontiers in Immunology, 2021, 12, 716606.	4.8	6
13	The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study. Lancet Rheumatology, The, 2021, 3, e627-e637.	3.9	132
14	Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Communications, 2021, 3, fcab141.	3.3	17
15	The legacy of maternal SARS-CoV-2 infection on the immunology of the neonate. Nature Immunology, 2021, 22, 1490-1502.	14.5	65
16	Humoral and cellular immunity to delayed second dose of SARS-CoV-2 BNT162b2 mRNA vaccination in patients with cancer. Cancer Cell, 2021, 39, 1445-1447.	16.8	29
17	Phase II multicentre, double-blind, randomised trial of ustekinumab in adolescents with new-onset type 1 diabetes (USTEK1D): trial protocol. BMJ Open, 2021, 11, e049595.	1.9	2
18	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198

TIM I TREE

#	Article	IF	CITATIONS
19	Study protocol: Minimum effective low dose: anti-human thymocyte globulin (MELD-ATG): phase II, dose ranging, efficacy study of antithymocyte globulin (ATG) within 6 weeks of diagnosis of type 1 diabetes. BMJ Open, 2021, 11, e053669.	1.9	4
20	Type 1 diabetes can present before the age of 6Âmonths and is characterised by autoimmunity and rapid loss of beta cells. Diabetologia, 2020, 63, 2605-2615.	6.3	24
21	Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine, 2020, 59, 102844.	6.1	41
22	GAD-alum immunotherapy in type 1 diabetes expands bifunctional Th1/Th2 autoreactive CD4 T cells. Diabetologia, 2020, 63, 1186-1198.	6.3	17
23	Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes, 2019, 68, 1366-1379.	0.6	49
24	Persistent Câ€peptide is associated with reduced hypoglycaemia but not HbA _{1c} in adults with longstanding Type 1 diabetes: evidence for lack of intensive treatment in UK clinical practice?. Diabetic Medicine, 2019, 36, 1092-1099.	2.3	32
25	Chronic Immune Activation in Systemic Lupus Erythematosus and the Autoimmune PTPN22 Trp620 Risk Allele Drive the Expansion of FOXP3+ Regulatory T Cells and PD-1 Expression. Frontiers in Immunology, 2019, 10, 2606.	4.8	31
26	Historical and new insights into pathogenesis of type 1 diabetes. Clinical and Experimental Immunology, 2019, 198, 292-293.	2.6	2
27	Phenotypic Analysis of Human Lymph Nodes in Subjects With New-Onset Type 1 Diabetes and Healthy Individuals by Flow Cytometry. Frontiers in Immunology, 2019, 10, 2547.	4.8	7
28	Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia, 2018, 61, 2252-2258.	6.3	51
29	Multipotent Adult Progenitor Cells Suppress T Cell Activation in In Vivo Models of Homeostatic Proliferation in a Prostaglandin E2-Dependent Manner. Frontiers in Immunology, 2018, 9, 645.	4.8	16
30	C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent Stable Phase. Diabetes Care, 2018, 41, 1486-1492.	8.6	81
31	Generation of human islet-specific regulatory T cells by TCR gene transfer. Journal of Autoimmunity, 2017, 79, 63-73.	6.5	102
32	IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. Proceedings of the United States of America, 2017, 114, 7083-7088.	7.1	87
33	Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Science Translational Medicine, 2017, 9, .	12.4	151
34	Regulatory T cell dysfunction in type 1 diabetes: what's broken and how can we fix it?. Diabetologia, 2017, 60, 1839-1850.	6.3	134
35	A CD80-Biased CTLA4-Ig Fusion Protein with Superior In Vivo Efficacy by Simultaneous Engineering of Affinity, Selectivity, Stability, and FcRn Binding. Journal of Immunology, 2017, 198, 528-537.	0.8	14
36	Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial. PLoS Medicine, 2016, 13, e1002139.	8.4	117

TIM I TREE

#	Article	IF	CITATIONS
37	Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e244.	6.0	129
38	Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry. Journal of Immunology, 2015, 195, 2030-2037.	0.8	130
39	Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes, 2015, 64, 3891-3902.	0.6	46
40	Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2. Molecular Therapy, 2015, 23, 1783-1793.	8.2	40
41	Immune modulation in humans: implications for type 1 diabetes mellitus. Nature Reviews Endocrinology, 2014, 10, 229-242.	9.6	121
42	Circulating T follicular helper cell and regulatory T cell frequencies are influenced by B cell depletion in patients with granulomatosis with polyangiitis. Rheumatology, 2014, 53, 621-630.	1.9	47
43	<scp>CD</scp> 161 expression characterizes a subpopulation of human regulatory <scp>T</scp> cells that produces <scp>IL</scp> â€17 in a <scp>STAT</scp> 3â€dependent manner. European Journal of Immunology, 2013, 43, 2043-2054.	2.9	114
44	Postthymic Expansion in Human CD4 Naive T Cells Defined by Expression of Functional High-Affinity IL-2 Receptors. Journal of Immunology, 2013, 190, 2554-2566.	0.8	60
45	Mesenchymal stromal cells as a means of controlling pathological T-cell responses in allogeneic islet transplantation. Current Opinion in Organ Transplantation, 2013, 18, 59-64.	1.6	16
46	Clinical-Grade Multipotent Adult Progenitor Cells Durably Control Pathogenic T Cell Responses in Human Models of Transplantation and Autoimmunity. Journal of Immunology, 2013, 190, 4542-4552.	0.8	72
47	Analysis Of T Cell Receptor Repertoire Reveals Evidence For Antigen-Specific Response In CLL Lymph Nodes. Blood, 2013, 122, 4141-4141.	1.4	0
48	Type 1 Diabetes-Associated <i>IL2RA</i> Variation Lowers IL-2 Signaling and Contributes to Diminished CD4+CD25+ Regulatory T Cell Function. Journal of Immunology, 2012, 188, 4644-4653.	0.8	187
49	Peripheral and Islet Interleukin-17 Pathway Activation Characterizes Human Autoimmune Diabetes and Promotes Cytokine-Mediated β-Cell Death. Diabetes, 2011, 60, 2112-2119.	0.6	178
50	Current approaches to measuring human islet-antigen specific T cell function in type 1 diabetes. Clinical and Experimental Immunology, 2010, 162, 197-209.	2.6	54
51	Naturally Arising Human CD4 T-Cells That Recognize Islet Autoantigens and Secrete Interleukin-10 Regulate Proinflammatory T-Cell Responses via Linked Suppression. Diabetes, 2010, 59, 1451-1460.	0.6	96
52	Plasmacytoid Dendritic Cells Are Proportionally Expanded at Diagnosis of Type 1 Diabetes and Enhance Islet Autoantigen Presentation to T-Cells Through Immune Complex Capture. Diabetes, 2009, 58, 138-145.	0.6	93
53	CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. Journal of Clinical Investigation, 2008, 118, 3390-402.	8.2	315
54	Cytotoxic Preproinsulin-specific CD8 T Cells in Type 1 Diabetes in Man. Clinical Immunology, 2007, 123, S10.	3.2	0

TIM I TREE

#	Article	IF	CITATIONS
55	A Mini Meta-Analysis of Studies on CD4+CD25+ T cells in Human Type 1 Diabetes: Report of the Immunology of Diabetes Society T Cell Workshop. Annals of the New York Academy of Sciences, 2006, 1079, 9-18.	3.8	66
56	Defective Suppressor Function in CD4+CD25+ T-Cells From Patients With Type 1 Diabetes. Diabetes, 2005, 54, 92-99.	0.6	745
57	HLA Class II molecules on haplotypes associated with type 1 diabetes exhibit similar patterns of binding affinities for coxsackievirus P2C peptides. Immunology, 2005, 116, 337-346.	4.4	15
58	HLA-DQ-Regulated T-Cell Responses to Islet Cell Autoantigens Insulin and GAD65. Diabetes, 2004, 53, 1692-1699.	0.6	25
59	Enhancing the Sensitivity of Assays to Detect T Cell Reactivity: The Effect of Cell Separation and Cryopreservation Media. Annals of the New York Academy of Sciences, 2004, 1037, 26-32.	3.8	12
60	Autoreactive T cells in human type 1 diabetes. Endocrinology and Metabolism Clinics of North America, 2004, 33, 113-133.	3.2	23
61	Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Journal of Autoimmunity, 2003, 21, 365-376.	6.5	81
62	Processing and Presentation of the Islet Autoantigen GAD by Vascular Endothelial Cells Promotes Transmigration of Autoreactive T-Cells. Diabetes, 2003, 52, 717-725.	0.6	71
63	Characterization of Preparations of GAD65, Proinsulin, and the Islet Tyrosine Phosphatase IA-2 for Use in Detection of Autoreactive T-Cells in Type 1 Diabetes: Report of Phase II of the Second International Immunology of Diabetes Society Workshop for Standardization of T-cell Assays in Type 1 Diabetes. Diabetes. 2001. 50. 1749-1754.	0.6	76
64	Evidence for recognition of novel islet T cell antigens by granule-specific T cell lines from new onset type 1 diabetic patients. Clinical and Experimental Immunology, 2000, 121, 100-105.	2.6	8
65	Two amino acids in glutamic acid decarboxylase act in concert for maintainance of conformational determinants recognised by Type I diabetic autoantibodies. Diabetologia, 2000, 43, 881-889.	6.3	17
66	The novel cuticular collagen Ovcol-1 of Onchocerca volvulus is preferentially recognized by immunoglobulin G3 from putatively immune individuals. Infection and Immunity, 1997, 65, 164-170.	2.2	8
67	Characterisation of an immunodominant glycoprotein antigen of Onchocerca volvulus with homologues in other filarial nematodes and Caenorhabditis elegans. Molecular and Biochemical Parasitology, 1995, 69, 185-195.	1.1	49
68	Resistance to Onchocerca volvulus: Differential Cellular and Humoral Responses to a Recombinant Antigen, OvMBP20/11. Journal of Infectious Diseases, 1995, 172, 831-837.	4.0	32
69	Heterogeneity of IgG antibody responses to cloned Onchocerca volvulus antigens in microfiladermia positive individuals from Esmeraldas Province, Ecuador. Parasite Immunology, 1994, 16, 201-209.	1.5	13
70	Onchocerca volvulus: Characterization of an Immunodominant Hypodermal Antigen Present in Adult and Larval Parasites. Experimental Parasitology, 1993, 77, 414-424.	1.2	26