Dorota Dziurka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/573274/publications.pdf

Version: 2024-02-01

623734 752698 47 488 14 20 citations g-index h-index papers 48 48 48 329 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Influence of Impregnation with Modified Starch of a Paper Core on Bending of Wood-Based Honeycomb Panels in Changing Climatic Conditions. Materials, 2022, 15, 395.	2.9	5
2	Possibility to Use Short Sawn Timber in the Production of Glued Laminated Beams. Materials, 2022, 15, 2992.	2.9	4
3	The Possibility to Use Pine Timber Pieces with Small Size in the Production of Glulam Beams. Materials, 2022, 15, 3154.	2.9	3
4	The Effect of Periodic Loading of Glued Laminated Beams on Their Static Bending Strength. Materials, 2022, 15, 3928.	2.9	2
5	GL Beams Reinforced with Plywood in the Outer Layer. Materials, 2022, 15, 3976.	2.9	3
6	The reduction of adhesive application in plywood manufacturing by using nanocelluloseâ€reinforced ureaâ€formaldehyde resin. Journal of Applied Polymer Science, 2021, 138, 49834.	2.6	22
7	The possibility to use a side-timber in glulam beams manufacturing for structural applications. Annals of WULS Forestry and Wood Technology, 2021, 113, 65-73.	0.2	2
8	Strength Properties of Structural Glulam Elements from Pine (Pinus sylvestris L.) Timber Reinforced in the Tensile Zone with Steel and Basalt Rods. Materials, 2021, 14, 2574.	2.9	14
9	Lightweight Insulation Boards Based on Lignocellulosic Particles Glued with Agents of Natural Origin. Materials, 2021, 14, 3219.	2.9	3
10	Influence of the Structure of Lattice Beams on Their Strength Properties. Materials, 2021, 14, 5765.	2.9	1
11	Strength Properties of Structural Glulam Manufactured from Pine (Pinus sylvestris L.) Side Boards. Materials, 2021, 14, 7312.	2.9	4
12	The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part I: Evaluation of the Quality of the Pine Timber in the Bending Test. Materials, 2020, 13, 3957.	2.9	19
13	A Qualitative Analysis of Sawn Timber Obtained from Various Sites Throughout Poland in the Aspect of Polish and European Standards of Quality. Forests, 2020, 11, 713.	2.1	1
14	The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part II: Strength Properties of Glued Laminated Timber. Materials, 2020, 13, 4029.	2.9	16
15	The Application of Oak Bark Powder as a Filler for Melamine-Urea-Formaldehyde Adhesive in Plywood Manufacturing. Forests, 2020, 11, 1249.	2.1	32
16	Experimental Research and Numerical Analysis of the Elastic Properties of Paper Cell Cores before and after Impregnation. Materials, 2020, 13, 2058.	2.9	15
17	By-products of sawmill industry as raw materials for manufacture of chip-sawdust boards. Journal of Building Engineering, 2020, 32, 101460.	3.4	16
18	Effects of Chip Type on the Properties of Chip–Sawdust Boards Glued with Polymeric Diphenyl Methane Diisocyanate. Materials, 2020, 13, 1329.	2.9	11

#	Article	IF	CITATIONS
19	Properties of Plywood Produced with Urea-Formaldehyde Adhesive Modified with Nanocellulose and Microcellulose. Drvna Industrija, 2020, 71, 61-67.	0.6	15
20	Hemp flour as a formaldehyde scavenger for melamine-urea-formaldehyde adhesive in plywood production. BioResources, 2020, 15, 4052-4064.	1.0	20
21	The effect of nanocellulose addition to phenol-formaldehyde adhesive in water-resistant plywood manufacturing. BioResources, 2020, 15, 5388-5401.	1.0	20
22	The possible reduction of phenol-formaldehyde resin spread rate by its nanocellulose-reinforcement in plywood manufacturing process. Annals of WULS Forestry and Wood Technology, 2020, 111, 21-26.	0.2	0
23	Construction board resistance to accelerated aging. BioResources, 2020, 15, 2680-2690.	1.0	2
24	Effects of a Chipboard Structure on Its Physical and Mechanical Properties. Materials, 2019, 12, 3777.	2.9	11
25	Relationships between Thermoplastic Type and Properties of Polymer-Triticale Boards. Polymers, 2019, 11, 1750.	4.5	9
26	The effect of phenol-formaldehyde adhesive modification with fire retardant on the properties of birch plywood. Annals of WULS Forestry and Wood Technology, 2019, 106, 197-113.	0.2	0
27	Possibility of Using Fine Wood Strands for the Production of P5 Type Building Boards. BioResources, 2018, 13, .	1.0	5
28	Properties of Particleboards Produced from Various Lignocellulosic Particles. BioResources, 2018, 13,	1.0	15
29	Construction particleboards made from rapeseed straw glued with hybrid pMDI/PF resin. European Journal of Wood and Wood Products, 2017, 75, 175-184.	2.9	35
30	The Possibility to Use Long Fibres from Fast Growing Hemp (Cannabis sativa L.) for the Production of Boards for the Building and Furniture Industry. BioResources, 2017, 12, .	1.0	16
31	Dimensional stability of oriented strand boards with external layers made of non-strand chips: Changes in board length. BioResources, 2017, 12, 7107-7117.	1.0	1
32	The Possibility of Replacing Strands in the Core Layer of Oriented Strand Board by Particles from the Stems of Rape (Brassica napus L. var. napus). BioResources, 2016, 11 , .	1.0	4
33	Properties of Oriented Strand Boards with External Layers made of Non-Strand Chips. BioResources, 2016, 11, .	1.0	3
34	Possibility of using the expanded polystyrene and rape straw to the manufacture of lightweight particleboards. Maderas: Ciencia Y Tecnologia, 2015, , 0-0.	0.7	9
35	Low-Density Oriented Strand Boards. BioResources, 2015, 10, .	1.0	5
36	Sound absorption of wood-based materials. Holzforschung, 2015, 69, 431-439.	1.9	37

#	Article	IF	CITATIONS
37	Possibility of Using Accelerated Aging Tests to Assess the Performance of OSBs Exposed to Environmental Conditions. BioResources, 2014, 9, .	1.0	4
38	Properties of Liquid and Polycondensed UF Resin Modified with pMDI. Drvna Industrija, 2014, 65, 115-119.	0.6	19
39	Experimental study of wood acoustic absorption characteristics. Holzforschung, 2014, 68, 467-476.	1.9	27
40	The Influence of Microfungi on Physicomechanical Properties of Particleboards. BioResources, 2014, 9, .	1.0	1
41	Lightweight boards from wood and rape straw particles. , 2013, 56, 19-31.		3
42	Dimensional Stability of OSB Panels Subjected to Variable Relative Humidity: Core Layer Made with Fine Wood Chips. BioResources, $2013, 8, .$	1.0	2
43	The Effect of Residual Swelling after Drying on Internal Bond in OSB. Drvna Industrija, 2012, 63, 241-247.	0.6	0
44	Potential of shortening pressing time or reducing pressing temperature for plywood resinated with PF resin modified using Aalcohols and esters. European Journal of Wood and Wood Products, 2011, 69, 317-323.	2.9	20
45	The Utilization of Chips from Comminuted Wood Waste as a Substitute for Flakes in the Oriented Strand Board Core. Forest Products Journal, 2011, 61, 473-477.	0.4	8
46	Properties of phenol–formaldehyde resin modified with organic acid esters. Journal of Applied Polymer Science, 2008, 107, 3358-3366.	2.6	17
47	The effect of methods of introducing acrylic emulsions grafted with acetoacetyl groups on the properties of particleboards. Journal of Applied Polymer Science, 2004, 91, 2256-2264.	2.6	5