Steven Van Passel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5732354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Landfill Mining in view of multiple resource recovery: a critical review. Journal of Cleaner Production, 2013, 55, 45-55.	4.6	282
2	Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environmental Impact Assessment Review, 2014, 48, 27-33.	4.4	221
3	Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges. Ecological Economics, 2017, 132, 144-154.	2.9	189
4	Life cycle analyses of organic photovoltaics: a review. Energy and Environmental Science, 2013, 6, 3136.	15.6	180
5	Measuring farm sustainability and explaining differences in sustainable efficiency. Ecological Economics, 2007, 62, 149-161.	2.9	165
6	MOTIFS: a monitoring tool for integrated farm sustainability. Agronomy for Sustainable Development, 2008, 28, 321-332.	2.2	163
7	How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework. Green Chemistry, 2019, 21, 4868-4886.	4.6	115
8	A systematic review of environmental and economic impacts of smart grids. Renewable and Sustainable Energy Reviews, 2017, 68, 888-898.	8.2	107
9	The economics of enhanced landfill mining: private and societal performance drivers. Journal of Cleaner Production, 2013, 55, 92-102.	4.6	106
10	Renewable energy development in rural areas of Iran. Renewable and Sustainable Energy Reviews, 2016, 65, 743-755.	8.2	105
11	Determinants of risk behaviour: effects of perceived risks and risk attitude on farmer's adoption of risk management strategies. Journal of Risk Research, 2016, 19, 56-78.	1.4	105
12	Battery pack recycling: Behaviour change interventions derived from an integrative theory of planned behaviour study. Resources, Conservation and Recycling, 2017, 122, 66-82.	5.3	91
13	Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. Journal of Cleaner Production, 2015, 88, 336-344.	4.6	85
14	Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling. Journal of Cleaner Production, 2020, 270, 122442.	4.6	85
15	Techno-economic assessment of mechanical recycling of challenging post-consumer plastic packaging waste. Resources, Conservation and Recycling, 2021, 170, 105607.	5.3	80
16	A techno-economic assessment of an algal-based biorefinery. Clean Technologies and Environmental Policy, 2016, 18, 1849-1862.	2.1	78
17	A Ricardian Analysis of the Impact of Climate Change on European Agriculture. Environmental and Resource Economics, 2017, 67, 725-760.	1.5	77
18	Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass and Bioenergy, 2012, 39, 470-477.	2.9	72

#	Article	IF	CITATIONS
19	Social sustainability assessments in the biobased economy: Towards a systemic approach. Renewable and Sustainable Energy Reviews, 2018, 82, 1839-1853.	8.2	72
20	Multilevel and multi-user sustainability assessment of farming systems. Environmental Impact Assessment Review, 2012, 32, 170-180.	4.4	68
21	A review of sustainability indicators for biobased chemicals. Renewable and Sustainable Energy Reviews, 2018, 94, 115-126.	8.2	67
22	Sustainable value assessment of farms using frontier efficiency benchmarks. Journal of Environmental Management, 2009, 90, 3057-3069.	3.8	63
23	A techno-economic evaluation of a biomass energy conversion park. Applied Energy, 2013, 104, 611-622.	5.1	61
24	Agricultural land conversion: Reviewing drought impacts and coping strategies. International Journal of Disaster Risk Reduction, 2018, 31, 184-195.	1.8	61
25	Food miles to assess sustainability: A revision. Sustainable Development, 2013, 21, 1-17.	6.9	60
26	Assessing the success of electricity demand response programs: A meta-analysis. Energy Research and Social Science, 2018, 40, 110-117.	3.0	60
27	Assessment of environmental and economic feasibility of Enhanced Landfill Mining. Waste Management, 2015, 45, 434-447.	3.7	59
28	Vulnerability Assessment Models to Drought: Toward a Conceptual Framework. Sustainability, 2016, 8, 588.	1.6	53
29	Land-Use Suitability in Northeast Iran: Application of AHP-GIS Hybrid Model. ISPRS International Journal of Geo-Information, 2017, 6, 396.	1.4	51
30	Environmental and economic performance of plasma gasification in Enhanced Landfill Mining. Waste Management, 2015, 45, 458-467.	3.7	50
31	A review on learning effects in prospective technology assessment. Renewable and Sustainable Energy Reviews, 2020, 130, 109937.	8.2	49
32	Modeling the Impact of Urbanization on Land-Use Change in Bahir Dar City, Ethiopia: An Integrated Cellular Automata–Markov Chain Approach. Land, 2020, 9, 115.	1.2	49
33	The potential of microalgae biorefineries in Belgium and India: An environmental techno-economic assessment. Bioresource Technology, 2018, 267, 271-280.	4.8	48
34	Cognitive mapping: A method to elucidate and present farmers' risk perception. Agricultural Systems, 2013, 122, 42-52.	3.2	47
35	Higher sustainability performance of intensive grazing versus zero-grazing dairy systems. Agronomy for Sustainable Development, 2012, 32, 629-638.	2.2	46
36	Integrated techno-economic assessment of a biorefinery process: The high-end valorization of the lignocellulosic fraction in wood streams. Journal of Cleaner Production, 2020, 266, 122022.	4.6	45

#	Article	IF	CITATIONS
37	The effect of waste incineration taxation on industrial plastic waste generation: A panel analysis. Resources, Conservation and Recycling, 2020, 157, 104717.	5.3	44
38	Beyond the Environmentalist's Paradox and the Debate on Weak versus Strong Sustainability. BioScience, 2012, 62, 251-259.	2.2	40
39	Development and technoâ€economic evaluation of a biorefinery based on biomass (waste) streams – case study in the Netherlands. Biofuels, Bioproducts and Biorefining, 2014, 8, 635-644.	1.9	39
40	Farm household risk balancing: empirical evidence from Switzerland. European Review of Agricultural Economics, 2016, 43, 637-662.	1.5	39
41	The impact of policy on microgrid economics: A review. Renewable and Sustainable Energy Reviews, 2018, 81, 3111-3119.	8.2	38
42	The future of organic photovoltaic solar cells as a direct power source for consumer electronics. Solar Energy Materials and Solar Cells, 2012, 103, 1-10.	3.0	37
43	Potential of life cycle assessment to support environmental decision making at commercial dairy farms. Agricultural Systems, 2014, 131, 105-115.	3.2	37
44	A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework. Renewable and Sustainable Energy Reviews, 2017, 68, 876-887.	8.2	37
45	Young people's acceptance of bioenergy and the influence of attitude strength on information provision. Renewable Energy, 2017, 107, 417-430.	4.3	37
46	Comparing frontier methods for economic–environmental trade-off analysis. European Journal of Operational Research, 2010, 207, 1027-1040.	3.5	36
47	Monetary Valuation of Natural Predators for Biological Pest Control in Pear Production. Ecological Economics, 2017, 134, 160-173.	2.9	36
48	Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region. Science of the Total Environment, 2019, 660, 1513-1521.	3.9	36
49	Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions. Energy, 2011, 36, 1940-1947.	4.5	35
50	Determining potential locations for biomass valorization using a macro screening approach. Biomass and Bioenergy, 2012, 45, 175-186.	2.9	35
51	Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials. Environmental Impact Assessment Review, 2014, 45, 19-29.	4.4	35
52	Valorization of thermal treatment residues in Enhanced Landfill Mining: environmental and economic evaluation. Journal of Cleaner Production, 2015, 99, 275-285.	4.6	33
53	Assessment of the sustainability guidelines of EU Renewable Energy Directive: the case of biorefineries. Journal of Cleaner Production, 2015, 88, 61-70.	4.6	33
54	A multi-objective optimization-extended techno-economic assessment: exploring the optimal microalgal-based value chain. Green Chemistry, 2019, 21, 5945-5959.	4.6	33

#	Article	IF	CITATIONS
55	Do Western and Eastern Europe have the same agricultural climate response? Taking adaptive capacity into account. Global Environmental Change, 2016, 41, 74-87.	3.6	31
56	Environmental and health impacts of effluents from textile industries in Ethiopia: the case of Gelan and Dukem, Oromia Regional State. Environmental Monitoring and Assessment, 2017, 189, 11.	1.3	31
57	The idea of weak sustainability is illegitimate. Environment, Development and Sustainability, 2018, 20, 223-232.	2.7	30
58	The Sustainable Value approach: A clarifying and constructive comment. Ecological Economics, 2010, 69, 2303-2306.	2.9	29
59	Combining photovoltaics and sound barriers – A feasibility study. Renewable Energy, 2012, 46, 297-303.	4.3	29
60	A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase. Renewable Energy, 2013, 57, 5-11.	4.3	29
61	A stochastic techno-economic assessment of seabed mining of polymetallic nodules in the Clarion Clipperton Fracture Zone. Marine Policy, 2018, 95, 133-141.	1.5	28
62	Impacts of the hydropower-controlled Tana-Beles interbasin water transfer on downstream rural livelihoods (northwest Ethiopia). Journal of Hydrology, 2019, 569, 436-448.	2.3	27
63	Sustainability impacts of tidal river management: Towards a conceptual framework. Ecological Indicators, 2018, 85, 451-467.	2.6	26
64	Towards a more structured selection process for attributes and levels in choice experiments: A study in a Belgian protected area. Ecosystem Services, 2016, 18, 45-57.	2.3	25
65	Economic sustainability assessment in semi-steppe rangelands. Science of the Total Environment, 2018, 637-638, 112-119.	3.9	25
66	Sustainability indicators for biobased chemicals: A Delphi study using Multi-Criteria Decision Analysis. Resources, Conservation and Recycling, 2019, 144, 198-208.	5.3	25
67	Farm-level evidence on risk balancing behavior in the EU-15. Agricultural Finance Review, 2014, 74, 17-37.	0.7	24
68	Economic benefits of combining clean energy technologies: the case of solar photovoltaics and battery electric vehicles. International Journal of Energy Research, 2015, 39, 1109-1119.	2.2	24
69	Study on alternative approaches to corrosion protection of ballast tanks using an economic model. Marine Structures, 2013, 32, 1-17.	1.6	23
70	Solar cooking in Senegalese villages: An application of best–worst scaling. Energy Policy, 2014, 67, 447-458.	4.2	23
71	Take out the farmer: An economic assessment of land expropriation for urban expansion in Bahir Dar, Northwest Ethiopia. Land Use Policy, 2019, 87, 104038.	2.5	23
72	Effective bioeconomy policies for the uptake of innovative technologies under resource constraints. Biomass and Bioenergy, 2019, 120, 91-106.	2.9	23

#	Article	IF	CITATIONS
73	An integrated techno-sustainability assessment (TSA) framework for emerging technologies. Green Chemistry, 2021, 23, 1700-1715.	4.6	23
74	An aggregate resource efficiency perspective on sustainability: A Sustainable Value application to the EU-15 countries. Ecological Economics, 2011, 71, 99-110.	2.9	22
75	â€~On tomorrow's grounds', Flemish agriculture in 2030: a case of participatory translation of sustainability principles into a vision for the future. Journal of Cleaner Production, 2008, 16, 1062-1070.	4.6	21
76	Agricultural Land Conversion Drivers in Northeast Iran: Application of Structural Equation Model. Applied Spatial Analysis and Policy, 2016, 9, 591-609.	1.0	21
77	Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach. Energies, 2017, 10, 2136.	1.6	21
78	Steering the adoption of battery storage through electricity tariff design. Renewable and Sustainable Energy Reviews, 2018, 98, 125-139.	8.2	21
79	Techno-economic Assessment Methodology for Ultrasonic Production of Biofuels. Biofuels and Biorefineries, 2015, , 317-345.	0.5	20
80	Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs. Energy Policy, 2020, 137, 111183.	4.2	19
81	Impacts of the Hara Biosphere Reserve on Livelihood and Welfare in Persian Gulf. Ecological Economics, 2017, 141, 76-86.	2.9	19
82	Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams. Waste Management, 2016, 55, 345-354.	3.7	18
83	Attitudes of Agricultural Experts Toward Genetically Modified Crops: A Case Study in Southwest Iran. Science and Engineering Ethics, 2016, 22, 509-524.	1.7	18
84	Heterogeneous Impact of Soil Contamination on Farmland Prices in the Belgian Campine Region: Evidence from Unconditional Quantile Regressions. Environmental and Resource Economics, 2017, 66, 135-168.	1.5	18
85	Climate response of rainfed versus irrigated farms: the bias of farm heterogeneity in irrigation. Climatic Change, 2018, 147, 225-234.	1.7	18
86	Big is efficient: Evidence from agricultural cooperatives in Ethiopia. Agricultural Economics (United) Tj ETQq0 0) rgBT /Ov 2.0	erlock 10 Tf 5
87	Cost-efficient emission abatement of energy and transportation technologies: mitigation costs and policy impacts for Belgium. Clean Technologies and Environmental Policy, 2014, 16, 1107-1118.	2.1	17
88	Increasing the cost-effectiveness of EU agri-environment policy measures through evaluation of farm and field-level environmental and economic performance. Agricultural Systems, 2015, 136, 70-78.	3.2	17
89	A Hotelling model for the circular economy including recycling, substitution and waste accumulation. Resources, Conservation and Recycling, 2018, 128, 98-109.	5.3	17
90	Direct and indirect effect of irrigation water availability on crop revenue in northwest Ethiopia: A	24	17

90Direct and indirect effect of irrigation water availability on crop revenue in northwest Ethiopia: A
structural equation model. Agricultural Water Management, 2019, 220, 27-35.2.417

#	Article	IF	CITATIONS
91	Persistence and changes in the peripheral Beles basin of Ethiopia. Regional Environmental Change, 2018, 18, 2089-2104.	1.4	16
92	Pathways how irrigation water affects crop revenue of smallholder farmers in northwest Ethiopia: A mixed approach. Agricultural Water Management, 2020, 233, 106101.	2.4	16
93	Exploring variability across cooperatives: economic performance of agricultural cooperatives in northern Ethiopia. International Food and Agribusiness Management Review, 2021, 24, 397-419.	0.8	16
94	External costs from fossil electricity generation: A review of the applied impact pathway approach. Energy and Environment, 2018, 29, 635-648.	2.7	15
95	Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme. Energies, 2019, 12, 165.	1.6	15
96	Adaptive capacity of smallholder farmers toward climate change: evidence from Hamadan province in Iran. Climate and Development, 2020, 12, 923-933.	2.2	15
97	Farmers' decision to use drought early warning system in developing countries. Science of the Total Environment, 2021, 758, 142761.	3.9	15
98	Inventory and Assessment of Geosites for Geotourism Development in the Eastern and Southeastern Lake Tana Region, Ethiopia. Geoheritage, 2021, 13, 1.	1.5	15
99	Integrated assessment of agro-ecological systems: The case study of the "Alta Murgia―National park in Italy. Agricultural Systems, 2016, 144, 144-155.	3.2	14
100	Dissecting demand response: A quantile analysis of flexibility, household attitudes, and demographics. Energy Research and Social Science, 2019, 52, 169-180.	3.0	14
101	Uncovering Ecosystem Services of Expropriated Land: The Case of Urban Expansion in Bahir Dar, Northwest Ethiopia. Land, 2020, 9, 395.	1.2	13
102	Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach. Land, 2021, 10, 246.	1.2	13
103	Using agro-environmental models to design a sustainable benchmark for the sustainable value method. Agricultural Systems, 2015, 136, 1-13.	3.2	12
104	The lock-in effect and the greening of automotive cooling systems in the European Union. Journal of Environmental Management, 2017, 203, 1199-1207.	3.8	12
105	An agent-based model of farmer behaviour to explain the limited adaptability of Flemish agriculture. Environmental Innovation and Societal Transitions, 2017, 22, 63-77.	2.5	12
106	Eliciting stakeholder needs – An anticipatory approach assessing enhanced landfill mining. Waste Management, 2019, 98, 113-125.	3.7	12
107	Reducing the cost of ballast tank corrosion: anÂeconomic modeling approach. Marine Structures, 2013, 32, 136-152.	1.6	11
108	Farm household risk balancing: implications for policy from an EU perspective. Agricultural Finance Review, 2015, 75, 450-468.	0.7	11

#	Article	IF	CITATIONS
109	How Participation in Vegetables Market Affects Livelihoods: Empirical Evidence from Northern Ethiopia. Journal of International Food and Agribusiness Marketing, 2018, 30, 107-131.	1.0	11
110	Assessing the sustainability of community forest management: A case study from Iran. Forest Policy and Economics, 2018, 96, 1-8.	1.5	11
111	Farmers' willingness to contribute to the restoration of an Ethiopian Rift Valley lake: a contingent valuation study. Environment, Development and Sustainability, 2021, 23, 10646-10665.	2.7	11
112	Marketing Innovation in Rural Small Food Industries in Iran. Journal of Food Products Marketing, 2015, 21, 533-551.	1.4	10
113	Combining Monte Carlo simulations and experimental design for incorporating risk and uncertainty in investment decisions for cleantech: a fast pyrolysis case study. Clean Technologies and Environmental Policy, 2018, 20, 1195-1206.	2.1	10
114	The conceptualization of societal impacts of landfill mining – A system dynamics approach. Journal of Cleaner Production, 2021, 296, 126351.	4.6	10
115	An attempt to develop ecotourism in an unknown area: the case of Nehbandan County, South Khorasan Province, Iran. Environment, Development and Sustainability, 2021, 23, 11792-11817.	2.7	10
116	The option to abandon: Stimulating innovative groundwater remediation technologies characterized by technological uncertainty. Science of the Total Environment, 2014, 496, 63-74.	3.9	9
117	Economic and Environmental Performances of Small-Scale Rural PV Solar Projects under the Clean Development Mechanism: The Case of Cambodia. Energies, 2015, 8, 9892-9914.	1.6	9
118	Sustainable cropping pattern in North Iran: application of fuzzy goal programming. Environment, Development and Sustainability, 2017, 19, 2199-2216.	2.7	9
119	Eliciting farmers' preferences and willingness to pay for land use attributes in Northwest Ethiopia: A discrete choice experiment study. Land Use Policy, 2021, 109, 105634.	2.5	9
120	Climate Variable Choice in Ricardian Studies of European Agriculture. Revue Economique, 2019, Vol. 70, 375-401.	0.1	9
121	Relationship between farmers' perception of sustainability and future farming strategies: A commodity-level comparison. AIMS Agriculture and Food, 2019, 4, 613-642.	0.8	9
122	Prospective material and substance flow analysis of the end-of-life phase of crystalline silicon-based PV modules. Resources, Conservation and Recycling, 2022, 176, 105917.	5.3	9
123	Sustainability Indicators of Iran's Developmental Plans: Application of the Sustainability Compass Theory. Sustainability, 2015, 7, 14647-14660.	1.6	8
124	Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles. Journal of Environmental Economics and Policy, 2016, 5, 1-27.	1.5	8
125	Access to Preferential Loans for Poverty Reduction and Rural Development: Evidence from Vietnam. Journal of Economic Issues, 2018, 52, 246-269.	0.3	8
126	The Development of a Payment Regime for Deep Sea Mining Activities in the Area through Stakeholder Participation. International Journal of Marine and Coastal Law, 2019, 34, 571-601.	0.5	8

#	Article	IF	CITATIONS
127	ASSESSING THE ECONOMIC POTENTIAL OF LANDFILL MINING: REVIEW AND RECOMMENDATIONS. Detritus, 2019, Volume 08 - December 2019, 1.	0.4	8
128	Five-Year Development Plans of Renewable Energy Policies in Iran: A Content Analysis. Sustainability, 2022, 14, 1501.	1.6	8
129	A Ricardian Analysis of the Impact of Climate Change on European Agriculture. SSRN Electronic Journal, 2012, , .	0.4	7
130	Innovative market-based policy instruments for waste management: A case study on shredder residues in Belgium. Waste Management and Research, 2015, 33, 886-893.	2.2	7
131	Market Power Extended: From Foucault to Meadows. Sustainability, 2018, 10, 2843.	1.6	7
132	Beyond focus: Exploring variability of service provision of agricultural cooperatives. Annals of Public and Cooperative Economics, 2021, 92, 207-231.	1.3	7
133	Benefit Segmentation of Tourists to Geosites and Its Implications for Sustainable Development of Geotourism in the Southern Lake Tana Region, Ethiopia. Sustainability, 2022, 14, 3411.	1.6	7
134	Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system. Energy Policy, 2012, 42, 670-680.	4.2	6
135	Do bottom-up and independent agricultural cooperatives really perform better? Insights from a technical efficiency analysis in Ethiopia. Agrekon, 2020, 59, 93-109.	0.5	6
136	Accounting for externalities in cross-sectional economic models of climate change impacts. Ecological Economics, 2021, 185, 107058.	2.9	6
137	Heterogeneity in the solar-powered consumer electronics market: A discrete choice experiments study. Solar Energy Materials and Solar Cells, 2016, 156, 140-146.	3.0	5
138	Effects of Supply Chain Management on Tomato Export in Iran: Application of Structural Equation Modeling. Journal of Food Products Marketing, 2018, 24, 177-195.	1.4	5
139	Quantification of the Indirect Use Value of Functional Group Diversity Based on the Ecological Role of Species in the Ecosystem. Ecological Economics, 2018, 153, 181-194.	2.9	5
140	INTEGRATION OF RESOURCE RECOVERY INTO CURRENT WASTE MANAGEMENT THROUGH (ENHANCED) LANDFILL MINING. Detritus, 2019, Volume 08 - December 2019, 1.	0.4	5
141	Reforming Landâ€Tenure Systems in South Africa: Routes to Socioâ€Economic and Agricultural Sustainability. Development Policy Review, 2014, 32, 647-674.	1.0	4
142	Understanding communicational behavior among rangelands' stakeholders: application of social network analysis. Journal of Environmental Planning and Management, 2016, 59, 320-341.	2.4	4
143	What do Recent Assessments Tell Us About the Potential and Challenges of Landfill Mining?. , 2019, , 267-281.		4
144	Market power and sustainability: a new research agenda. Discover Sustainability, 2022, 3, 1.	1.4	4

#	Article	IF	CITATIONS
145	Win-win possibilities through capacity tariffs and battery storage in microgrids. Renewable and Sustainable Energy Reviews, 2019, 113, 109238.	8.2	3
146	Climate-Smart Agriculture in the Northeast of Brazil: An Integrated Assessment of the Aquaponics Technology. Sustainability, 2020, 12, 3734.	1.6	3
147	Small-scale irrigation expansion along the dam-regulated Tekeze River in Northern Ethiopia. International Journal of Water Resources Development, 2021, 37, 819-840.	1.2	3
148	Optimal timing of multiple investment decisions in a wood value chain: A real options approach. Journal of Environmental Management, 2021, 290, 112590.	3.8	3
149	The politics of green infrastructure: A discrete choice experiment with Flemish local decision-makers. Ecological Economics, 2022, 199, 107493.	2.9	3
150	Social risk screening using a socio-political ambiguity approach: the case of organic agriculture in Iran. Journal of Risk Research, 2015, 18, 747-770.	1.4	2
151	Investigating market power in the Belgian pork production chain. Review of Agricultural Food and Environmental Studies, 2019, 100, 93-117.	0.2	2
152	DEVELOPING STAKEHOLDER ARCHETYPES FOR ENHANCED LANDFILL MINING. Detritus, 2019, Volume 08 - December 2019, 1.	0.4	2
153	The effect of policy leveraging climate change adaptive capacity in agriculture. European Review of Agricultural Economics, 2019, , .	1.5	1
154	HOW DO WESTERN EUROPEAN FARMS BEHAVE AND RESPOND TO CLIMATE CHANGE? A SIMULTANEOUS IRRIGATION-CROP DECISION MODEL. Climate Change Economics, 2022, 13, .	2.9	1
155	Leasing out unused meeting room capacity to reduce future office space needs: A case study of The Hague, Netherlands. Journal of Building Engineering, 2021, 44, 102953.	1.6	0
156	Multilevel and Multi-user Sustainability Assessment of Farming Systems. , 2013, , 63-88.		0
157	Identifying the Interaction Between Landfill Taxes and NIMBY. A Simulation for Flanders (Belgium) Using a Dynamic Optimization Model. , 2016, , 497-509.		0
158	Determinants of internal governance quality: Evidence from corporations in Ethiopia. Cogent Economics and Finance, 2018, 6, 1537051.	0.8	0
159	Integrating PV+Battery Residential Microgrids in Distribution Networks: How Is the Point of Common Coupling Agreed Upon?. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 150-164.	0.2	0