
Xiaopeng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5731845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutritional quality and health risk of pepper fruit as affected by magnesium fertilization. Journal of the Science of Food and Agriculture, 2021, 101, 582-592.	1.7	9
2	A global metaâ€analysis of nitrous oxide emission from dripâ€irrigated cropping system. Global Change Biology, 2021, 27, 3244-3256.	4.2	47
3	Groundwater Depths Affect Phosphorus and Potassium Resorption but Not Their Utilization in a Desert Phreatophyte in Its Hyper-Arid Environment. Frontiers in Plant Science, 2021, 12, 665168.	1.7	6
4	Nitrous Oxide Emissions from an Alpine Grassland as Affected by Nitrogen Addition. Atmosphere, 2021, 12, 976.	1.0	5
5	Linking soil profile N2O concentration with surface flux in a cotton field under drip fertigation. Environmental Pollution, 2021, 285, 117458.	3.7	8
6	Topsoil Nutrients Drive Leaf Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Habitats with Different Shallow Groundwater Depths. Water (Switzerland), 2021, 13, 3093.	1.2	2
7	Enhanced efficiency nitrogen fertilizers were not effective in reducing N2O emissions from a drip-irrigated cotton field in arid region of Northwestern China. Science of the Total Environment, 2020, 748, 141543.	3.9	23
8	Enhancement of N2O emissions by grazing is related to soil physicochemical characteristics rather than nitrifier and denitrifier abundances in alpine grassland. Geoderma, 2020, 375, 114511.	2.3	24
9	Agronomic evaluation of polymer-coated urea and urease and nitrification inhibitors for cotton production under drip-fertigation in a dry climate. Scientific Reports, 2020, 10, 1472.	1.6	5
10	Agricultural management practices and environmental drivers of nitrous oxide emissions over a decade for an annual and an annual-perennial crop rotation. Agricultural and Forest Meteorology, 2019, 276-277, 107636.	1.9	21
11	Presence of spring-thaw N2O emissions are not linked to functional gene abundance in a drip-fertigated cropped soil in arid northwestern China. Science of the Total Environment, 2019, 695, 133670.	3.9	22
12	Nitrogen and phosphorus addition differentially affect plant ecological stoichiometry in desert grassland. Scientific Reports, 2019, 9, 18673.	1.6	20
13	Relationship between soil profile accumulation and surface emission of N2O: effects of soil moisture and fertilizer nitrogen. Biology and Fertility of Soils, 2019, 55, 97-107.	2.3	50
14	Manure application increased denitrifying gene abundance in a drip-irrigated cotton field. PeerJ, 2019, 7, e7894.	0.9	14
15	Yield and Nitrogen Use of Irrigated Processing Potato in Response to Placement, Timing and Source of Nitrogen Fertilizer in Manitoba. American Journal of Potato Research, 2018, 95, 513-525.	0.5	11
16	Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis. Environmental Pollution, 2018, 239, 375-383.	3.7	88
17	Controlling Soil Factor in Plant Growth and Salt Tolerance of Leguminous Plant Alhagi sparsifolia Shap. in Saline Deserts, Northwest China. Contemporary Problems of Ecology, 2018, 11, 111-121.	0.3	11
18	Soil property and cotton productivity changes with nutrient input intensity in the Taklimakan desert of China. Arid Land Research and Management, 2018, 32, 421-437.	0.6	8

XIAOPENG GAO

#	Article	IF	CITATIONS
19	Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crops Research, 2018, 229, 17-26.	2.3	50
20	Nitrate leaching from open-field and greenhouse vegetable systems in China: a meta-analysis. Environmental Science and Pollution Research, 2018, 25, 31007-31016.	2.7	46
21	Urea fertigation sources affect nitrous oxide emission from a drip-fertigated cotton field in northwestern China. Agriculture, Ecosystems and Environment, 2018, 265, 22-30.	2.5	28
22	Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China. Frontiers in Plant Science, 2018, 9, 338.	1.7	16
23	Meta-analysis data quantifying nitrous oxides emissions from Chinese vegetable production. Data in Brief, 2018, 19, 114-116.	0.5	3
24	Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nature Geoscience, 2017, 10, 279-283.	5.4	200
25	Stoichiometry in aboveground and fine roots of Seriphidium korovinii in desert grassland in response to artificial nitrogen addition. Journal of Plant Research, 2017, 130, 689-697.	1.2	17
26	A decade of carbon flux measurements with annual and perennial crop rotations on the Canadian Prairies. Agricultural and Forest Meteorology, 2017, 247, 491-502.	1.9	13
27	Nitrogen Fertilizer Management Practices to Reduce N2O Emissions from Irrigated Processing Potato in Manitoba. American Journal of Potato Research, 2017, 94, 390-402.	0.5	11
28	Agronomists' Views on the Potential to Adopt Beneficial Greenhouse Gas Nitrogen Management Practices Through Fertilizer Management. Canadian Journal of Soil Science, 2017, , .	0.5	1
29	Lower Nitrous Oxide Emissions from Anhydrous Ammonia Application Prior to Soil Freezing in Late Fall Than Spring Preâ€Plant Application. Journal of Environmental Quality, 2016, 45, 1133-1143.	1.0	30
30	Nitrogen (N) and phosphorus (P) resorption of two dominant alpine perennial grass species in response to contrasting N and P availability. Environmental and Experimental Botany, 2016, 127, 37-44.	2.0	41
31	Zinc Concentration in Rice (<i>Oryza sativa</i> L.) Grains and Allocation in Plants as Affected by Different Zinc Fertilization Strategies. Communications in Soil Science and Plant Analysis, 2016, 47, 761-768.	0.6	19
32	Enhanced Efficiency Urea Sources and Placement Effects on Nitrous Oxide Emissions. Agronomy Journal, 2015, 107, 265-277.	0.9	35
33	Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agriculture, Ecosystems and Environment, 2015, 206, 71-83.	2.5	87
34	Greenhouse Gas Accumulation in the Soil Profile is not Always Related to Surface Emissions in a Prairie Pothole Agricultural Landscape. Soil Science Society of America Journal, 2014, 78, 805-817.	1.2	19
35	Nitrous Oxide Emissions from a Clay Soil Receiving Granular Urea Formulations and Dairy Manure. Agronomy Journal, 2014, 106, 732-744.	0.9	60
36	Greenhouse gas emissions from pig slurry applied to forage legumes on a loamy sand soil in south central Manitoba. Canadian Journal of Soil Science, 2014, 94, 149-155.	0.5	6

XIAOPENG GAO

#	Article	IF	CITATIONS
37	Effect of nitrogen fertilizer rate on nitrous oxide emission from irrigated potato on a clay loam soil in Manitoba, Canada. Canadian Journal of Soil Science, 2013, 93, 1-11.	0.5	43
38	Growth and Iron Uptake of Lowland and Aerobic Rice Genotypes under Flooded and Aerobic Cultivation. Communications in Soil Science and Plant Analysis, 2012, 43, 1811-1822.	0.6	11
39	Grain concentrations of protein, iron and zinc and bread making quality in spring wheat as affected by seeding date and nitrogen fertilizer management. Journal of Geochemical Exploration, 2012, 121, 36-44.	1.5	46
40	Cadmium and Zinc Concentration in Grain of Durum Wheat in Relation to Phosphorus Fertilization, Crop Sequence and Tillage Management. Applied and Environmental Soil Science, 2012, 2012, 1-10.	0.8	30
41	Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agronomy for Sustainable Development, 2012, 32, 465-478.	2.2	82
42	Cadmium Concentration in Flax Colonized by Mycorrhizal Fungi Depends on Soil Phosphorus and Cadmium Concentrations. Communications in Soil Science and Plant Analysis, 2011, 42, 1882-1897.	0.6	15
43	Interactive effect of N fertilization and tillage management on Zn biofortification in durum wheat (<i>Triticum durum</i>). Canadian Journal of Plant Science, 2011, 91, 951-960.	0.3	6
44	Grain cadmium and zinc concentrations in wheat as affected by genotypic variation and potassium chloride fertilization. Field Crops Research, 2011, 122, 95-103.	2.3	44
45	Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphate fertilization. Plant and Soil, 2011, 338, 423-434.	1.8	31
46	Concentration of cadmium in durum wheat as affected by time, source and placement of nitrogen fertilization under reduced and conventional-tillage management. Plant and Soil, 2010, 337, 341-354.	1.8	43
47	Mycorrhizal colonization and grain Cd concentration of fieldâ€grown durum wheat in response to tillage, preceding crop and phosphorus fertilization. Journal of the Science of Food and Agriculture, 2010, 90, 750-758.	1.7	34
48	Geochemical Modeling of Zinc Bioavailability for Rice. Soil Science Society of America Journal, 2010, 74, 301-309.	1.2	11
49	Malate Exudation by Six Aerobic Rice Genotypes Varying in Zinc Uptake Efficiency. Journal of Environmental Quality, 2009, 38, 2315-2321.	1.0	38
50	Micronutrient Deficiencies in Crop Production in China. , 2008, , 127-148.		51
51	Biofortification in a Food Chain Approach for Rice in China. , 2008, , 181-203.		1
52	Soil and Crop Management for Improving Iron and Zinc Nutrition of Crops. , 2008, , 71-93.		2
53	How Does Aerobic Rice Take Up Zinc from Low Zinc Soil? Mechanisms, Trade-Offs, and Implications for Breeding. , 2008, , 153-170.		1
54	Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant and Soil, 2007, 290, 283-291.	1.8	83

XIAOPENG GAO

#	Article	IF	CITATIONS
55	Silicon Decreases Transpiration Rate and Conductance from Stomata of Maize Plants. Journal of Plant Nutrition, 2006, 29, 1637-1647.	0.9	248
56	From Flooded to Aerobic Conditions in Rice Cultivation: Consequences for Zinc Uptake. Plant and Soil, 2006, 280, 41-47.	1.8	84
57	Tolerance to Zinc Deficiency in Rice Correlates with Zinc Uptake and Translocation. Plant and Soil, 2005, 278, 253-261.	1.8	52
58	Silicon Improves Water Use Efficiency in Maize Plants. Journal of Plant Nutrition, 2005, 27, 1457-1470.	0.9	170