

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5731798/publications.pdf Version: 2024-02-01

helm

#	Article	IF	CITATIONS
1	Interfacial Microextraction Boosting Nitrogen Feed for Efficient Ambient Ammonia Synthesis in Aqueous Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	41
2	Processing robust lithium metal anode for high-security batteries: A minireview. Energy Storage Materials, 2022, 47, 122-133.	9.5	28
3	Eliminating Stubborn Insulated Deposition by Coordination Effect to Boost Zn Electrode Reversibility in Aqueous Electrolyte. Frontiers in Chemistry, 2022, 10, 851973.	1.8	4
4	Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended pâ~ï€ Conjugation of Dioxin. Nano Letters, 2022, 22, 3473-3479.	4.5	14
5	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. Energy Storage Materials, 2022, 49, 555-563.	9.5	10
6	Rapid leakage responsive and self-healing Li-metal batteries. Chemical Engineering Journal, 2021, 404, 126470.	6.6	26
7	Functional-selected LiF-intercalated-graphene enabling ultra-stable lithium sulfur battery. Journal of Energy Chemistry, 2021, 58, 78-84.	7.1	17
8	All-Liquid-Phase Reaction Mechanism Enabling Cryogenic Li–S Batteries. ACS Nano, 2021, 15, 13847-13856.	7.3	55
9	Single lithium-ion channel polymer binder for stabilizing sulfur cathodes. National Science Review, 2020, 7, 315-323.	4.6	43
10	Dendrite–free and Ultra–High energy lithium sulfur battery enabled by dimethyl polysulfide intermediates. Energy Storage Materials, 2020, 24, 265-271.	9.5	26
11	Super lithiophilic SEI derived from quinones electrolyte to guide Li uniform deposition. Energy Storage Materials, 2020, 24, 426-431.	9.5	34
12	Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer. Energy Storage Materials, 2020, 26, 385-390.	9.5	52
13	Identifying the Lewis Base Chemistry in Preventing the Deposition of Metal Oxides on Ketone-Enriched Carbon Cathodes for Highly Durable Metal–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 3603-3609.	4.0	9
14	Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. Electrochimica Acta, 2020, 334, 135562.	2.6	45
15	Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54537-54544.	4.0	49
16	Atomic Metal Vacancy Modulation of Single-Atom Dispersed Co/N/C for Highly Efficient and Stable Air Cathode. ACS Applied Materials & Interfaces, 2020, 12, 15298-15304.	4.0	33
17	Single-atom scale metal vacancy engineering in heteroatom-doped carbon for rechargeable zinc-air battery with reduced overpotential. Chemical Engineering Journal, 2020, 393, 124702.	6.6	43
18	Unveiling the Essential Nature of Lewis Basicity in Thermodynamically and Dynamically Promoted Nitrogen Fixation. Advanced Functional Materials, 2020, 30, 2001244.	7.8	49

Jie Liu

#	Article	IF	CITATIONS
19	In-situ observation as activity descriptor enables rational design of oxygen reduction catalyst for zinc-air battery. Energy Storage Materials, 2020, 27, 226-231.	9.5	42
20	Wiping off oxygen bonding to maximize heteroatom-induced improvement in oxygen reaction activity of metal site for high-performance zinc-air battery. Nanotechnology, 2020, 31, 195403.	1.3	1
21	Multifunctional Cellulose Nanocrystals as a High-Efficient Polysulfide Stopper for Practical Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17592-17601.	4.0	22
22	Toward safer solid-state lithium metal batteries: a review. Nanoscale Advances, 2020, 2, 1828-1836.	2.2	50
23	Enhanced utilization of active sites of Fe/N/C catalysts by pore-in-pore structures for ultrahigh mass activity. Nanotechnology, 2020, 31, 315401.	1.3	6
24	Strongly trapping soluble lithium polysulfides using polar cysteamine groups for highly stable lithium sulfur batteries. Nanotechnology, 2020, 31, 485403.	1.3	4
25	High Coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Materials, 2019, 17, 260-265.	9.5	35
26	Single-Atom Iron as Lithiophilic Site To Minimize Lithium Nucleation Overpotential for Stable Lithium Metal Full Battery. ACS Applied Materials & Interfaces, 2019, 11, 32008-32014.	4.0	64
27	A New Type of Electrolyte System To Suppress Polysulfide Dissolution for Lithium–Sulfur Battery. ACS Nano, 2019, 13, 9067-9073.	7.3	69
28	Nonflammable and High-Voltage-Tolerated Polymer Electrolyte Achieving High Stability and Safety in 4.9 V-Class Lithium Metal Battery. ACS Applied Materials & Interfaces, 2019, 11, 45048-45056.	4.0	73
29	Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nature Communications, 2019, 10, 3898.	5.8	191
30	Stabilizing cathodes of lithium–sulfur batteries by the chemical binding of sulfur and their discharge products to carbon nanofibers. New Journal of Chemistry, 2019, 43, 15267-15274.	1.4	7
31	Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nature Communications, 2019, 10, 341.	5.8	412
32	A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Materials, 2019, 22, 256-264.	9.5	89
33	Selenium-Doped Carbon Nanosheets with Strong Electron Cloud Delocalization for Nondeposition of Metal Oxides on Air Cathode of Zinc–Air Battery. ACS Applied Materials & Interfaces, 2019, 11, 20056-20063.	4.0	46
34	High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 2019, 19, 3066-3073.	4.5	108
35	Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature Communications, 2019, 10, 900.	5.8	297
36	Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries. Journal of Power Sources, 2019, 417, 70-75.	4.0	60

Jie Liu

#	Article	IF	CITATIONS
37	A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24477-24485.	5.2	51
38	High Lithium Ion Conductivity LiF/GO Solid Electrolyte Interphase Inhibiting the Shuttle of Lithium Polysulfides in Longâ€Life Li–S Batteries. Advanced Functional Materials, 2018, 28, 1706513.	7.8	109
39	A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for Highâ€Performance Sulfur Electrodes in Lithiumâ€ S ulfur Battery. Advanced Energy Materials, 2018, 8, 1702889.	10.2	270
40	Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Materials, 2018, 15, 53-64.	9.5	131
41	Use of Tween Polymer To Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium–Sulfur Battery. Nano Letters, 2018, 18, 4598-4605.	4.5	81
42	Greatly Improved Conductivity of Double hain Polymer Network Binder for High Sulfur Loading Lithium–Sulfur Batteries with a Low Electrolyte/Sulfur Ratio. Small, 2018, 14, e1801536.	5.2	47
43	Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30058-30064.	4.0	49
44	Facilitated Oxygen Chemisorption in Heteroatomâ€Doped Carbon for Improved Oxygen Reaction Activity in Allâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2018, 30, 1704898.	11.1	135
45	A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries. Advanced Materials, 2017, 29, 1605160.	11.1	284
46	Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters, 2017, 17, 538-543.	4.5	271
47	Stabilized Lithium–Sulfur Batteries by Covalently Binding Sulfur onto the Thiolâ€Terminated Polymeric Matrices. Small, 2017, 13, 1702104.	5.2	34
48	High coulombic efficiency and high-rate capability lithium sulfur batteries with low-solubility lithium polysulfides by using alkylene radicals to covalently connect sulfur. Nano Energy, 2017, 41, 758-764.	8.2	37
49	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co ₃ S ₄ Nanoboxes for High-Rate and Heat-Resistant Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2017, 139, 12710-12715.	6.6	456
50	Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. Nano Letters, 2017, 17, 5064-5070.	4.5	112