Rammile Ettelaie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5731651/publications.pdf

Version: 2024-02-01

80 papers 3,561 citations

196777 29 h-index 58 g-index

81 all docs 81 docs citations

81 times ranked 3317 citing authors

#	Article	IF	Citations
1	Ultra-efficient antimicrobial photodynamic inactivation system based on blue light and octyl gallate for ablation of planktonic bacteria and biofilms of Pseudomonas fluorescens. Food Chemistry, 2022, 374, 131585.	4.2	16
2	Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions. Nature Communications, 2022, 13, 475.	5.8	47
3	A Promising Therapeutic Soy-Based Pickering Emulsion Gel Stabilized by a Multifunctional Microcrystalline Cellulose: Application in 3D Food Printing. Journal of Agricultural and Food Chemistry, 2022, 70, 2374-2388.	2.4	32
4	Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21392-21405.	4.0	18
5	Kinetic evaluation of the starch molecular behavior under extrusion-based or laser powder bed fusion 3D printing systems: A systematic structural and biological comparison. Additive Manufacturing, 2022, 57, 102934.	1.7	7
6	Effect of amylose and amylopectin content on the colloidal behaviour of emulsions stabilised by OSA-Modified starch. Food Hydrocolloids, 2021, 111, 106363.	5.6	20
7	Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocolloids, 2021, 113, 106519.	5.6	43
8	Friction between soft contacts at nanoscale on uncoated and protein-coated surfaces. Nanoscale, 2021, 13, 2350-2367.	2.8	10
9	Highly Selective Catalysis at the Liquid–Liquid Interface Microregion. ACS Catalysis, 2021, 11, 1485-1494.	5. 5	34
10	Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on Chinese Taihu icefish preservation. Food Chemistry, 2021, 346, 128949.	4.2	44
11	A liquid marble method for synthesizing large-sized carbon microspheres with controlled interior structures. Carbon, 2021, 179, 541-553.	5.4	3
12	The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocolloids, 2021, 117, 106696.	5.6	21
13	Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12, 4968.	5.8	43
14	Application of Pickering emulsions in 3D printing of personalized nutrition. Part I: Development of reduced-fat printable casein-based ink. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126641.	2.3	36
15	Application of Pickering emulsions in 3D printing of personalized nutrition. Part II: Functional properties of reduced-fat 3D printed cheese analogues. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126760.	2.3	40
16	Development of an Antioxidative Pickering Emulsion Gel through Polyphenol-Inspired Free-Radical Grafting of Microcrystalline Cellulose for 3D Food Printing. Biomacromolecules, 2021, 22, 4592-4605.	2.6	28
17	On the mechanism behind enhanced antibacterial activity of alkyl gallate esters against foodborne pathogens and its application in Chinese icefish preservation. Food Microbiology, 2021, 99, 103817.	2.1	21
18	Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks. Food Hydrocolloids, 2021, 120, 106967.	5.6	72

#	Article	IF	CITATIONS
19	Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part II: Printing performance, thermal, tribological, and dynamic sensory characterization of printed objects. Food Hydrocolloids, 2021, 121, 107054.	5.6	73
20	Synergistic Interactions of Plant Protein Microgels and Cellulose Nanocrystals at the Interface and Their Inhibition of the Gastric Digestion of Pickering Emulsions. Langmuir, 2021, 37, 827-840.	1.6	22
21	New Horizons in Microbiological Food Safety: Ultraefficient Photodynamic Inactivation Based on a Gallic Acid Derivative and UV-A Light and Its Application with Electrospun Cyclodextrin Nanofibers. Journal of Agricultural and Food Chemistry, 2021, 69, 14961-14974.	2.4	8
22	On the heat stability of whey protein: Effect of sodium hexametaphosphate. International Journal of Dairy Technology, 2020, 73, 46-56.	1.3	15
23	Pea protein microgel particles as Pickering stabilisers of oil-in-water emulsions: Responsiveness to pH and ionic strength. Food Hydrocolloids, 2020, 102, 105583.	5.6	112
24	A Selfâ€Assembled Binary Protein Model Explains Highâ€Performance Salivary Lubrication from Macro to Nanoscale. Advanced Materials Interfaces, 2020, 7, 1901549.	1.9	24
25	Aqueous Lubrication: A Selfâ€Assembled Binary Protein Model Explains Highâ€Performance Salivary Lubrication from Macro to Nanoscale (Adv. Mater. Interfaces 1/2020). Advanced Materials Interfaces, 2020, 7, 2070002.	1.9	0
26	Detachment work of prolate spheroidal particles from fluid droplets: role of viscous dissipation. Soft Matter, 2020, 16, 4049-4056.	1.2	1
27	Oral behaviour of emulsions stabilized by mixed monolayer. Food Research International, 2019, 125, 108603.	2.9	14
28	On the Origin of Seemingly Nonsurface-Active Particles Partitioning between Phase-Separated Solutions of Incompatible Nonadsorbing Polymers and Their Adsorption at the Phase Boundary. Langmuir, 2019, 35, 9493-9503.	1.6	7
29	Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture. Nature Communications, 2019, 10, 1854.	5.8	52
30	Effect of storage temperature and relative humidity on long-term colloidal stability of reconstitutable emulsions stabilised by hydrophobically modified starch. Food Hydrocolloids, 2019, 95, 62-75.	5.6	10
31	Evolution of surface micro-structure and moisture sorption characteristics of spray-dried detergent powders. Journal of Colloid and Interface Science, 2019, 551, 283-296.	5.0	10
32	Pickering Emulsion-Derived Liquid–Solid Hybrid Catalyst for Bridging Homogeneous and Heterogeneous Catalysis. Journal of the American Chemical Society, 2019, 141, 5220-5230.	6.6	93
33	Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Advances in Colloid and Interface Science, 2019, 263, 195-211.	7.0	131
34	Generation of ultra-stable Pickering microbubbles via poly alkylcyanoacrylates. Journal of Colloid and Interface Science, 2019, 536, 618-627.	5.0	11
35	Insignificant impact of the presence of lactose impurity on formation and colloid stabilising properties of whey protein–maltodextrin conjugates prepared via Maillard reactions. Food Structure, 2017, 12, 43-53.	2.3	14
36	On the structural polydispersity of random copolymers adsorbed at interfaces: comparison of surface and bulk distributions. Molecular Physics, 2017, 115, 1343-1351.	0.8	2

3

#	Article	IF	CITATIONS
37	Human roughness perception and possible factors effecting roughness sensation. Journal of Texture Studies, 2017, 48, 181-192.	1.1	20
38	Physico-mechanical and structural characteristics of blend film of poly (vinyl alcohol) with biodegradable polymers as affected by disorder-to-order conformational transition. Food Hydrocolloids, 2017, 71, 259-269.	5.6	25
39	Novel food grade dispersants: Review of recent progress. Current Opinion in Colloid and Interface Science, 2017, 28, 46-55.	3.4	18
40	Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. Journal of the American Chemical Society, 2017, 139, 17387-17396.	6.6	130
41	A Comparison Between Young and Elderly Adults Investigating the Manual and Oral Capabilities During the Eating Process. Journal of Texture Studies, 2016, 47, 361-372.	1.1	14
42	Physico-mechanical analysis data in support of compatibility of chitosan/ \hat{l}^2 -carrageenan polyelectrolyte films achieved by ascorbic acid, and the thermal degradation theory of \hat{l}^2 -carrageenan influencing the properties of its blends. Data in Brief, 2016, 9, 648-660.	0.5	6
43	Detachment Force of Particles with Pinning of Contact Line from Fluid Bubbles/Droplets. Langmuir, 2016, 32, 13040-13045.	1.6	7
44	Kinetic study of \hat{l}^2 -carrageenan degradation and its impact on mechanical and structural properties of chitosan/ \hat{l}^2 -carrageenan film. Carbohydrate Polymers, 2016, 142, 167-176.	5.1	78
45	Steric stabilising properties of hydrophobically modified starch: Amylose vs. amylopectin. Food Hydrocolloids, 2016, 58, 364-377.	5.6	27
46	In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: influence of thermal treatment. Soft Matter, 2016, 12, 3558-3569.	1.2	198
47	Tactile Sensitivity and Capability of Softâ€Solid Texture Discrimination. Journal of Texture Studies, 2015, 46, 429-439.	1.1	27
48	Evolution of bubble size distribution in particle stabilised bubble dispersions: Competition between particle adsorption and dissolution kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 475, 27-36.	2.3	10
49	Detachment force of particles from fluid droplets. Soft Matter, 2015, 11, 4251-4265.	1.2	33
50	Evaluation of the Sensory Correlation between Touch Sensitivity and the Capacity to Discriminate Viscosity. Journal of Sensory Studies, 2015, 30, 98-107.	0.8	22
51	Characterization of physical properties of tissue factor–containing microvesicles and a comparison of ultracentrifugeâ€based recovery procedures. Journal of Extracellular Vesicles, 2014, 3, .	5.5	43
52	First-order phase transition during displacement of amphiphilic biomacromolecules from interfaces by surfactant molecules. Journal of Physics Condensed Matter, 2014, 26, 464109.	0.7	5
53	Fragmented proteins as food emulsion stabilizers: A theoretical study. Biopolymers, 2014, 101, 945-958.	1.2	13
54	Effect of particle adsorption rates on the disproportionation process in pickering stabilised bubbles. Journal of Chemical Physics, 2014, 140, 204713.	1.2	19

#	Article	IF	Citations
55	Interactions between casein layers adsorbed on hydrophobic surfaces from self consistent field theory: \hat{l}^2 -casein versus para- \hat{l}^2 -casein. Food Hydrocolloids, 2014, 34, 236-246.	5.6	14
56	Colloidal interactions induced by overlap of mixed protein+polysaccharide interfacial layers. Food Hydrocolloids, 2014, 42, 106-117.	5.6	22
57	Influence of pH value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. Food Hydrocolloids, 2013, 32, 402-411.	5.6	30
58	Kinetics of Food Biopolymer Film Dehydration: Experimental Studies and Mathematical Modeling. Industrial & Engineering Chemistry Research, 2013, 52, 7391-7402.	1.8	2
59	Mixed protein–polysaccharide interfacial layers: effect of polysaccharide charge distribution. Soft Matter, 2012, 8, 7582.	1.2	21
60	A Theoretical Self-Consistent Field Study of Mixed Interfacial Biopolymer Films. ACS Symposium Series, 2009, , 46-66.	0.5	2
61	Mixed protein–polysaccharide interfacial layers: a self consistent field calculation study. Faraday Discussions, 2008, 139, 161.	1.6	28
62	Interactions between Adsorbed Layers of $\hat{l}\pm < \text{sub} > \text{S1} \text{-Casein with Covalently Bound Side Chains: A Self-Consistent Field Study. Biomacromolecules, 2008, 9, 3188-3200.}$	2.6	22
63	Effect of High Salt Concentrations on the Stabilization of Bubbles by Silica Particles. Langmuir, 2006, 22, 1273-1280.	1.6	135
64	Numerical Studies of Transport Properties in Heterogeneous Food Systems. Applied Rheology, 2006, 16, 275-286.	3.5	3
65	Using Self-Consistent-Field Theory to Understand Enhanced Steric Stabilization by Casein-Like Copolymers at Low Surface Coverage in Mixed Protein Layers. Biomacromolecules, 2005, 6, 3018-3029.	2.6	23
66	Surface phase separation in complex mixed adsorbing systems: An interface-bulk coupling effect. Journal of Chemical Physics, 2004, 121, 3775-3783.	1.2	5
67	Foam stability: proteins and nanoparticles. Current Opinion in Colloid and Interface Science, 2004, 9, 314-320.	3.4	302
68	Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Advances in Colloid and Interface Science, 2004, 107, 27-49.	7.0	176
69	Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Langmuir, 2004, 20, 8517-8525.	1.6	269
70	Computer Simulation of the Microstructure of a Nanoparticle Monolayer Formed under Interfacial Compression. Langmuir, 2004, 20, 6096-6099.	1.6	21
71	Disproportionation of clustered protein-stabilized bubbles at planar air–water interfaces. Journal of Colloid and Interface Science, 2003, 263, 47-58.	5.0	36
72	Computer simulation and modeling of food colloids. Current Opinion in Colloid and Interface Science, 2003, 8, 415-421.	3.4	20

#	Article	IF	CITATIONS
73	Growth and aggregation of surfactant islands during the displacement of an adsorbed protein monolayer: a Brownian dynamics simulation study. Colloids and Surfaces B: Biointerfaces, 2003, 31, 149-157.	2.5	21
74	Steric interactions mediated by multiblock polymers and biopolymers: role of block size and addition of hydrophilic side chains. Colloids and Surfaces B: Biointerfaces, 2003, 31, 195-206.	2.5	23
75	Outstanding Stability of Particle-Stabilized Bubbles. Langmuir, 2003, 19, 3106-3108.	1.6	293
76	Do Mixtures of Proteins Phase Separate at Interfaces?. Langmuir, 2003, 19, 1923-1926.	1.6	18
77	Kinetics of Disproportionation of Air Bubbles beneath a Planar Air–Water Interface Stabilized by Food Proteins. Journal of Colloid and Interface Science, 2002, 252, 202-213.	5.0	100
78	Network formation and its consequences for the physical behaviour of associating polymers in solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 112, 97-116.	2.3	106
79	Thermodynamics of phase separation in mixtures of associating polymers and homopolymers in solution. Macromolecules, 1994, 27, 5616-5622.	2.2	38
80	Chapter 16. Theoretical Study of Phase Transition Behaviour in Mixed Biopolymer + Surfactant Interfacial Layers Using the Self-Consistent-Field Approach. , 0, , 245-256.		1