
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5731430/publications.pdf Version: 2024-02-01

Ι λιιρλ Μιςήξιι

#	Article	IF	CITATIONS
1	Electrical impedance sensing of organic pollutants with ultrathin graphitic membranes. Nanotechnology, 2022, 33, 075207.	1.3	3
2	Powerful Electron-Transfer Screen-Printed Platforms as Biosensing Tools: The Case of Uric Acid Biosensor. Biosensors, 2022, 12, 2.	2.3	11
3	Monitoring of alcohol-based hand rubs in SARS-CoV-2 prevention by HS-GC/MS and electrochemical biosensor: A survey of commercial samples. Journal of Pharmaceutical and Biomedical Analysis, 2022, 214, 114694.	1.4	3
4	Analysis and diagnosis of the state of conservation and restoration of paper-based artifacts: A non-invasive approach. Journal of Cultural Heritage, 2022, 55, 290-299.	1.5	4
5	Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms. Nanomaterials, 2022, 12, 1779.	1.9	12
6	Cost-effective and disposable label-free voltammetric immunosensor for sensitive detection of interleukin-6. Biosensors and Bioelectronics, 2022, 213, 114467.	5.3	24
7	Vegetable waste scaffolds for 3D-stem cell proliferating systems and low cost biosensors. Talanta, 2021, 223, 121671.	2.9	13
8	Electrical Impedance Spectroscopy for Real-Time Monitoring of the Life Cycle of Graphene Nanoplatelets Filters for Some Organic Industrial Pollutants. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	7
9	Helicity: A Non-Conventional Stereogenic Element for Designing Inherently Chiral Ionic Liquids for Electrochemical Enantiodifferentiation. Molecules, 2021, 26, 311.	1.7	11
10	Gellan Gum Hydrogel as an Aqueous Treatment Method for <i>Xuan</i> Paper. Restaurator, 2021, 42, 37-54.	0.2	5
11	Microfluidic Flow Injection Immunoassay System for Algal Toxins Determination: A Case of Study. Frontiers in Chemistry, 2021, 9, 626630.	1.8	7
12	Determination of Folic Acid Using Biosensors—A Short Review of Recent Progress. Sensors, 2021, 21, 3360.	2.1	16
13	Ultrasound-Stimulated PVA Microbubbles for Adhesive Removal from Cellulose-Based Materials: A Groundbreaking Low-Impact Methodology. ACS Applied Materials & Interfaces, 2021, 13, 24207-24217.	4.0	5
14	Natural-based chiral task-specific deep eutectic solvents: A novel, effective tool for enantiodiscrimination in electroanalysis. Electrochimica Acta, 2021, 380, 138189.	2.6	30
15	2,12-Diaza[6]helicene: An Efficient Non-Conventional Stereogenic Scaffold for Enantioselective Electrochemical Interphases. Chemosensors, 2021, 9, 216.	1.8	5
16	Humulus lupulus Cone Extract Efficacy in Alginate-Based Edible Coatings on the Quality and Nutraceutical Traits of Fresh-Cut Kiwifruit. Antioxidants, 2021, 10, 1395.	2.2	10
17	Toward a Reversible Consolidation of Paper Materials Using Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2021, 13, 44972-44982.	4.0	14
18	An ELIME assay for hepatitis A virus detection. Talanta, 2021, 234, 122672.	2.9	5

#	Article	IF	CITATIONS
19	Microwave-assisted synthesis of catalytic silver nanoparticles by hyperpigmented tomato skins: A green approach. LWT - Food Science and Technology, 2020, 133, 110088.	2.5	12
20	Phytocomplex Influences Antimicrobial and Health Properties of Concentrated Glycerine Macerates. Antibiotics, 2020, 9, 858.	1.5	4
21	An inverse-designed electrochemical platform for analytical applications. Electrochemistry Communications, 2020, 121, 106862.	2.3	12
22	Gellan Gum Microgels as Effective Agents for a Rapid Cleaning of Paper. ACS Applied Polymer Materials, 2020, 2, 2791-2801.	2.0	24
23	Evaluating the influence of paper characteristics on the efficacy of new poly(vinyl alcohol) based hydrogels for cleaning modern and ancient paper. Microchemical Journal, 2020, 155, 104716.	2.3	10
24	Polyvinyl alcohol based hydrogels as new tunable materials for application in the cultural heritage field. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110777.	2.5	24
25	NiO Pseudocapacitance and Optical Properties: Does The Shape Win?. Materials, 2020, 13, 1417.	1.3	24
26	Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector. TrAC - Trends in Analytical Chemistry, 2020, 128, 115909.	5.8	25
27	A completely green approach to the synthesis of dendritic silver nanostructures starting from white grape pomace as a potential nanofactory. Arabian Journal of Chemistry, 2019, 12, 597-609.	2.3	27
28	Re-modeling ELISA kits embedded in an automated system suitable for on-line detection of algal toxins in seawater. Sensors and Actuators B: Chemical, 2019, 283, 865-872.	4.0	28
29	Sensors for biosensors: a novel tandem monitoring in a droplet towards efficient screening of robust design and optimal operating conditions. Analyst, The, 2019, 144, 2511-2522.	1.7	17
30	Biochar from Brewers' Spent Grain: A Green and Low-Cost Smart Material to Modify Screen-Printed Electrodes. Biosensors, 2019, 9, 139.	2.3	41
31	Interdisciplinary approach to develop a disposable real time monitoring tool for the cleaning of graphic artworks. Application on "le Nozze di Psiche― Microchemical Journal, 2018, 138, 369-378.	2.3	17
32	Ruthenium and manganese metalloporphyrins modified screen-printed electrodes for bio-relevant electroactive targets. Journal of Porphyrins and Phthalocyanines, 2018, 22, 491-500.	0.4	7
33	Hydrolates and Gellan: An Eco-innovative Synergy for Safe Cleaning of Paper Artworks. Studies in Conservation, 2018, 63, 13-23.	0.6	16
34	Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimization. Sensors and Actuators B: Chemical, 2018, 259, 945-955.	4.0	22
35	Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta, 2018, 188, 50-57.	2.9	56
36	A new analytical approach to characterize the effect of Î ³ -ray sterilization on wood. Microchemical Journal, 2018, 143, 493-502.	2.3	6

#	Article	IF	CITATIONS
37	Postharvest application of brassica meal-derived allyl-isothiocyanate to kiwifruit: effect on fruit quality, nutraceutical parameters and physiological response. Journal of Food Science and Technology, 2017, 54, 751-760.	1.4	14
38	Innovative chemical gels meet enzymes: A smart combination for cleaning paper artworks. Journal of Colloid and Interface Science, 2017, 502, 153-164.	5.0	40
39	Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles. Electrochimica Acta, 2017, 246, 580-587.	2.6	40
40	NiO morphology dependent optical and electrochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 178-182.	2.3	43
41	Towards an Immunoanalytical Systems for Hepatitis a Virus Determination. Procedia Technology, 2017, 27, 85-86.	1.1	4
42	Monitoring Domoic Acid in Marine Phytoplankton by Disposable Immunosensors. American Journal of Plant Sciences, 2017, 08, 1077-1091.	0.3	3
43	A combined approach for predicting the cytotoxic effect of drug-nanoaggregates. Journal of Materials Chemistry B, 2016, 4, 6516-6523.	2.9	5
44	Electronic tongue for microcystin screening in waters. Biosensors and Bioelectronics, 2016, 80, 154-160.	5.3	40
45	Development of a diagnostic and cleaning tool for paper artworks: a case of study. Microchemical Journal, 2016, 126, 32-41.	2.3	18
46	How to tune a paper cleaning process by means of modified gellan hydrogels. Microchemical Journal, 2016, 126, 359-367.	2.3	20
47	Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC - Trends in Analytical Chemistry, 2016, 79, 114-126.	5.8	303
48	Rapid electrochemical screening methods for food safety and quality. Acta IMEKO (2012), 2016, 5, 45.	0.4	1
49	New Strategy for the Cleaning of Paper Artworks: A Smart Combination of Gels and Biosensors. Advances in Chemistry, 2014, 2014, 1-10.	1.1	8
50	E-tongue for Ecological Monitoring Purposes: The Case of Microcystins Detection. Procedia Engineering, 2014, 87, 1358-1361.	1.2	6
51	Rheoreversible hydrogels in paper restoration processes: a versatile tool. Chemistry Central Journal, 2014, 8, 10.	2.6	13
52	Cleaning of Paper Artworks: Development of an Efficient Gel-Based Material Able to Remove Starch Paste. ACS Applied Materials & Interfaces, 2014, 6, 16519-16528.	4.0	45
53	Gellan hydrogel as a powerful tool in paper cleaning process: A detailed study. Journal of Colloid and Interface Science, 2014, 416, 205-211.	5.0	66
54	Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C. Analytical and Bioanalytical Chemistry, 2013, 405, 5531-5538.	1.9	7

#	Article	IF	CITATIONS
55	Antimicrobial and Biosensing Ultrasound-Responsive Lysozyme-Shelled Microbubbles. ACS Applied Materials & Interfaces, 2013, 5, 464-471.	4.0	31
56	Versatile hydrogels: an efficient way to clean paper artworks. RSC Advances, 2013, 3, 22896.	1.7	13
57	Development of a competitive immunoassay for the determination of cortisol in human saliva. Analytical Biochemistry, 2013, 434, 308-314.	1.1	25
58	Carbon Blackâ€Modified Screenâ€Printed Electrodes as Electroanalytical Tools. Electroanalysis, 2012, 24, 743-751.	1.5	111
59	Combining a hydrogel and an electrochemical biosensor to determine the extent of degradation of paper artworks. Analytical and Bioanalytical Chemistry, 2012, 403, 1485-1489.	1.9	20
60	Oxidative species and Sâ€glutathionyl conjugates in the apoptosis induction by allyl thiosulfate. FEBS Journal, 2012, 279, 154-167.	2.2	39
61	A disposable biosensor for the determination of alpha-amylase in human saliva. Mikrochimica Acta, 2010, 170, 243-249.	2.5	37
62	Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosensors and Bioelectronics, 2009, 24, 1962-1968.	5.3	89
63	AFB1–AP Conjugate for Enzyme Immunoassay of Aflatoxin B1in Corn Samples. Analytical Letters, 2009, 42, 1170-1186.	1.0	9
64	An ELIME-array for detection of aflatoxin B1 in corn samples. Food Control, 2009, 20, 371-375.	2.8	48
65	Aflatoxin M1 determination and stability study in milk samples using a screen-printed 96-well electrochemical microplate. International Dairy Journal, 2009, 19, 753-758.	1.5	30
66	Receptors for organochlorine pesticides based on calixarenes. Mikrochimica Acta, 2008, 163, 195-202.	2.5	12
67	Development of Sensors to Trace Toxins from Dinoflagellates and Other Algae to Seafood. NATO Science for Peace and Security Series A: Chemistry and Biology, 2008, , 301-310.	0.5	1
68	Rapid Screening Electrochemical Methods for Aflatoxin B1and Typeâ€A Trichothecenes: A Preliminary Study. Analytical Letters, 2007, 40, 1333-1346.	1.0	25
69	Enzymatic Spectrophotometric Method for Aflatoxin B Detection Based on Acetylcholinesterase Inhibition. Analytical Chemistry, 2007, 79, 3409-3415.	3.2	80
70	Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosensors and Bioelectronics, 2007, 22, 1434-1440.	5.3	170
71	A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta, 2007, 605, 111-129.	2.6	299
72	Development and Application of a Two-Phase Clean-Up System in Food Samples Prior to Fluorescence Analysis of Aflatoxins. Mikrochimica Acta, 2006, 153, 101-108.	2.5	9

LAURA MICHELI

#	Article	IF	CITATIONS
73	Study of a toxin–alkaline phosphatase conjugate for the development of an immunosensor for tetrodotoxin determination. Analytical and Bioanalytical Chemistry, 2006, 385, 1068-1074.	1.9	47
74	Detection of Aflatoxin B1in Barley: Comparative Study of Immunosensor and HPLC. Analytical Letters, 2006, 39, 1559-1572.	1.0	55
75	An electrochemical immunosensor for aflatoxin M1 determination in milk using screen-printed electrodes. Biosensors and Bioelectronics, 2005, 21, 588-596.	5.3	150
76	Electrochemical immunosensor for determination of aflatoxin B1 in barley. Analytica Chimica Acta, 2004, 520, 159-164.	2.6	81
77	Aflatoxin M1 determination in raw milk using a flow-injection immunoassay system. Analytica Chimica Acta, 2004, 520, 141-148.	2.6	74
78	Disposable immunosensor for the determination of domoic acid in shellfish. Biosensors and Bioelectronics, 2004, 20, 190-196.	5.3	67
79	Development of an Electrochemical Immunosensor for Ochratoxin A. Analytical Letters, 2004, 37, 1545-1558.	1.0	47
80	Amperometric separation-free immunosensor for real-time environmental monitoring. Analytica Chimica Acta, 2001, 427, 173-180.	2.6	47