
Huixing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5731244/publications.pdf Version: 2024-02-01

HUIVING WANG

#	Article	IF	CITATIONS
1	Influence of Kinematic Viscosity of Base Oil on Magnetorheological Grease. Journal of Shanghai Jiaotong University (Science), 2023, 28, 676-685.	0.9	3
2	Temperature-dependent dynamic properties of magnetorheological gel composite: experiment and modeling. Smart Materials and Structures, 2022, 31, 035002.	3.5	6
3	Characterization of nonlinear viscoelasticity of magnetorheological grease under large oscillatory shear by using Fourier transform-Chebyshev analysis. Journal of Intelligent Material Systems and Structures, 2021, 32, 614-631.	2.5	10
4	Field–Frequency-Dependent Non-linear Rheological Behavior of Magnetorheological Grease Under Large Amplitude Oscillatory Shear. Frontiers in Materials, 2021, 8, .	2.4	2
5	Magneto-Induced Normal Stress of Magnetorheological Gel Under Quasi-Statically Monotonic and Periodically Cyclic Loading. Frontiers in Materials, 2021, 8, .	2.4	7
6	A heavy-duty magnetorheological fluid mount with flow and squeeze model. Smart Materials and Structures, 2021, 30, 085012.	3.5	6
7	Development of a four-parameter phenomenological model for the nonlinear viscoelastic behaviour of magnetorheological gels. Materials and Design, 2020, 194, 108935.	7.0	9
8	Magneto-induced rheological properties of magnetorheological gel under quasi-static shear with large deformation. RSC Advances, 2020, 10, 31691-31704.	3.6	10
9	Modeling the non-linear rheological behavior of magnetorheological gel using a computationally efficient model. Smart Materials and Structures, 2020, 29, 105021.	3.5	8
10	Quasi-Static Rheological Properties of Lithium-Based Magnetorheological Grease under Large Deformation. Materials, 2019, 12, 2431.	2.9	10
11	Normal force of lithium-based magnetorheological grease under quasi-static shear with large deformation. RSC Advances, 2019, 9, 27167-27175.	3.6	5
12	Dynamic rheological properties of polyurethane-based magnetorheological gels studied using oscillation shear tests. RSC Advances, 2019, 9, 10124-10134.	3.6	17
13	Effect of temperature on rheological properties of lithium-based magnetorheological grease. Smart Materials and Structures, 2019, 28, 035002.	3.5	41
14	Development and dynamic performance test of magnetorheological material for recoil of gun. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	11