Hoi Ri Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5730430/publications.pdf

Version: 2024-02-01

74 5,346 papers citations

33 h-index 72 g-index

77 all docs 77
docs citations

77 times ranked 7583 citing authors

#	Article	IF	CITATIONS
1	Tetrazoleâ∈Based Energetic Metalâ€Organic Frameworks: Impacts of Metals and Ligands on Explosive Properties. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	7
2	Modulating Energetic Characteristics of Multicomponent 1D Coordination Polymers: Interplay of Metal–Ligand Coordination Modes. Inorganic Chemistry, 2022, 61, 1881-1887.	4.0	5
3	Post-synthetic ligand cyclization in metal–organic frameworks through functional group connection with regioisomerism. Chemical Communications, 2022, 58, 5948-5951.	4.1	5
4	Metal–Organic Frameworks: Special Collection 2020. Chemistry - A European Journal, 2022, 28, e202200607.	3.3	0
5	Thermodynamic Separation of Hydrogen Isotopes Using Hofmann-Type Metal–Organic Frameworks with High-Density Open Metal Sites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30946-30951.	8.0	15
6	Dynamic Variation of Responsive Metal-Organic Frameworks toward Specific Stimuli. Bulletin of Japan Society of Coordination Chemistry, 2022, 79, 50-57.	0.2	0
7	Interface-Sensitized Chemiresistor: Integrated Conductive and Porous Metal-Organic Frameworks. Chemical Engineering Journal, 2022, 449, 137780.	12.7	14
8	Solid-state phase transformations toward a metal-organic framework of 7-connected Zn4O secondary building units. Nano Research, 2021, 14, 411-416.	10.4	4
9	High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Applied Catalysis B: Environmental, 2021, 284, 119690.	20.2	69
10	Synthesis of MOF-on-MOF architectures in the context of interfacial lattice matching. CrystEngComm, 2021, 23, 2337-2354.	2.6	27
11	Nanocomposite synthesis strategies based on the transformation of well-tailored metal–organic frameworks. Chemical Communications, 2021, 57, 6960-6974.	4.1	5
12	Hydrogen separation and purification with MOF-based materials. Materials Chemistry Frontiers, 2021, 5, 4022-4041.	5.9	23
13	Non-stackable molecules assemble into porous crystals displaying concerted cavity-changing motions. Chemical Science, 2021, 12, 6378-6384.	7.4	7
14	Elucidation of Diffusivity of Hydrogen Isotopes in Flexible MOFs by Quasiâ€Elastic Neutron Scattering. Advanced Materials, 2021, 33, e2007412.	21.0	16
15	<scp>MOFâ€onâ€MOF</scp> Architectures: Applications in Separation, Catalysis, and Sensing. Bulletin of the Korean Chemical Society, 2021, 42, 956-969.	1.9	85
16	Mechanochemistry as a Reconstruction Tool of Decomposed Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 11825-11829.	4.0	11
17	Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorganic Chemistry Frontiers, 2020, 7, 12-27.	6.0	60
18	Porous and Nonporous Coordination Polymers Induced by Pseudohalide Ions for Luminescence and Gas Sorption. Inorganic Chemistry, 2020, 59, 15987-15999.	4.0	18

#	Article	IF	CITATIONS
19	Structural evolution of ZIF-67-derived catalysts for furfural hydrogenation. Journal of Catalysis, 2020, 392, 302-312.	6.2	25
20	Dual-fixations of europium cations and TEMPO species on metal–organic frameworks for the aerobic oxidation of alcohols. Dalton Transactions, 2020, 49, 8060-8066.	3.3	12
21	Pore engineering of metal-organic frameworks with coordinating functionalities. Coordination Chemistry Reviews, 2020, 420, 213377.	18.8	75
22	Specific Isotope-Responsive Breathing Transition in Flexible Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13278-13282.	13.7	47
23	Surfaceâ€Deactivated Core–Shell Metal–Organic Framework by Simple Ligand Exchange for Enhanced Size Discrimination in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2020, 26, 7568-7572.	3.3	34
24	Computer-aided discovery of connected metal-organic frameworks. Nature Communications, 2019, 10, 3620.	12.8	71
25	Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Organic Frameworks, and Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1805293.	21.0	98
26	Tuning of the flexibility in metal–organic frameworks based on pendant arm macrocycles. Chemical Communications, 2019, 55, 8832-8835.	4.1	16
27	Coordinated Molecule-Modulated Magnetic Phase with Metamagnetism in Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 8895-8899.	4.0	17
28	Isotope Separation: Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Organic Frameworks, and Covalent Organic Frameworks (Adv. Mater. 20/2019). Advanced Materials, 2019, 31, 1970147.	21.0	15
29	Elucidation of flexible metal-organic frameworks: Research progresses and recent developments. Coordination Chemistry Reviews, 2019, 389, 161-188.	18.8	163
30	Versatile Processing of Metal–Organic Framework–Fluoropolymer Composite Inks with Chemical Resistance and Sensor Applications. ACS Applied Materials & Interfaces, 2019, 11, 4385-4392.	8.0	29
31	Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 12061-12074.	2.8	6
32	Three-dimensional iron(<scp>ii</scp>) porous coordination polymer exhibiting carbon dioxide-dependent spin crossover. Chemical Communications, 2018, 54, 4262-4265.	4.1	29
33	Structural diversity of metal–organic frameworks via employment of azamacrocycles as a building block. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 237-249.	1.6	16
34	Hierarchically porous adamantane-shaped carbon nanoframes. Journal of Materials Chemistry A, 2018, 6, 18906-18911.	10.3	29
35	Single-crystal-to-single-crystal transformation of a coordination polymer from 2D to 3D by [2 + 2] photodimerization assisted by a coexisting flexible ligand. CrystEngComm, 2017, 19, 3719-3722.	2.6	13
36	Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TM _{<i>×</i>} Ce _{1–<i>×</i>} O _{2â^Î} , TM = Mn, Ni, Co, or Fe) for CO Oxidation. Chemistry of Materials, 2017, 29, 2874-2882.	6.7	40

#	Article	IF	CITATIONS
37	Topology Conversions of Non-Interpenetrated Metal–Organic Frameworks to Doubly Interpenetrated Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 3899-3907.	6.7	17
38	Mix-and-Match Assembly of Block Copolymer Blends in Solution. Macromolecules, 2017, 50, 3234-3243.	4.8	39
39	Direct conversion of coordination compounds into Ni ₂ P nanoparticles entrapped in 3D mesoporous graphene for an efficient hydrogen evolution reaction. Materials Chemistry Frontiers, 2017, 1, 973-978.	5.9	41
40	Transformation of Metal–Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights. Accounts of Chemical Research, 2017, 50, 2684-2692.	15.6	184
41	Exploiting Diffusion Barrier and Chemical Affinity of Metal–Organic Frameworks for Efficient Hydrogen Isotope Separation. Journal of the American Chemical Society, 2017, 139, 15135-15141.	13.7	125
42	Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53(Al). Journal of the American Chemical Society, 2017, 139, 17743-17746.	13.7	111
43	Zn-MOFs containing flexible $\hat{l}\pm, \hat{l}\%$ -alkane (or alkene)-dicarboxylates with 1,2-bis(4-pyridyl)ethylene: comparison with Zn-MOFs containing 1,2-bis(4-pyridyl)ethane ligands. CrystEngComm, 2017, 19, 99-109.	2.6	28
44	Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic Framework Constructed by a One-Step Self-Assembly. Scientific Reports, 2016, 6, 19337.	3.3	21
45	Upcycling of nonporous coordination polymers: controllable-conversion toward porosity-tuned N-doped carbons and their electrocatalytic activity in seawater batteries. Journal of Materials Chemistry A, 2016, 4, 13468-13475.	10.3	29
46	General Recyclable Redox-Metallothermic Reaction Route to Hierarchically Porous Carbon/Metal Composites. Chemistry of Materials, 2016, 28, 4403-4408.	6.7	25
47	Effects of porous carbon additives on the CO2 absorption performance of lithium orthosilicate. Thermochimica Acta, 2016, 637, 31-37.	2.7	20
48	Exploration of Gate-Opening and Breathing Phenomena in a Tailored Flexible Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1920-1925.	4.0	81
49	Simple coordination complex-derived three-dimensional mesoporous graphene as an efficient bifunctional oxygen electrocatalyst. Chemical Communications, 2015, 51, 6773-6776.	4.1	48
50	Solvent-induced single-crystal to single-crystal transformation of a Zn ₄ O-containing doubly interpenetrated metal–organic framework with a pcu net. CrystEngComm, 2015, 17, 8807-8811.	2.6	20
51	Thermal conversion of a tailored metal–organic framework into lithium silicate with an unusual morphology for efficient CO ₂ capture. Dalton Transactions, 2015, 44, 15130-15134.	3.3	38
52	$4,4\hat{a}\in^2$ -Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14986-14993.	10.3	88
53	Multi-core MgO NPs@C core–shell nanospheres for selective CO ₂ capture under mild conditions. New Journal of Chemistry, 2014, 38, 1606-1610.	2.8	20
54	Preparation of Co ₃ O ₄ electrode materials with different microstructures via pseudomorphic conversion of Co-based metal–organic frameworks. Journal of Materials Chemistry A, 2014, 2, 14393-14400.	10.3	62

#	Article	IF	Citations
55	A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties. Journal of Materials Chemistry A, 2014, 2, 10435-10443.	10.3	93
56	Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal–Organic Framework Crystals and Hetero Structures in Confined Microdroplets. Journal of the American Chemical Society, 2013, 135, 14619-14626.	13.7	294
57	Effect of sulphur vacancy on geometric and electronic structure of MoS2 induced by molecular hydrogen treatment at room temperature. RSC Advances, 2013, 3, 18424.	3.6	47
58	Metal–organic frameworks constructed from flexible ditopic ligands: conformational diversity of an aliphatic ligand. New Journal of Chemistry, 2013, 37, 4130.	2.8	22
59	Luminescent Li-Based Metal–Organic Framework Tailored for the Selective Detection of Explosive Nitroaromatic Compounds: Direct Observation of Interaction Sites. Inorganic Chemistry, 2013, 52, 589-595.	4.0	200
60	Fabrication of metal nanoparticles in metal–organic frameworks. Chemical Society Reviews, 2013, 42, 1807-1824.	38.1	596
61	Guest-driven structural flexibility of 2D coordination polymers: Synthesis, structural characterizations, and gas sorption properties. Inorganic Chemistry Communication, 2013, 33, 52-56.	3.9	10
62	Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 8940-8946.	13.7	243
63	Three-dimensional pillared metallomacrocycle–graphene frameworks with tunable micro- and mesoporosity. Journal of Materials Chemistry A, 2013, 1, 8432.	10.3	32
64	Investigation on the existence of optimum interlayer distance for H2 uptake using pillared-graphene oxide. International Journal of Hydrogen Energy, 2012, 37, 14217-14222.	7.1	32
65	Post-Synthetic Modifications of Framework Metal lons in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations. Chemistry of Materials, 2012, 24, 3065-3073.	6.7	192
66	Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nature Materials, 2011, 10, 286-290.	27.5	600
67	Flexible and Redox-Active Coordination Polymer: Control of the Network Structure by Pendant Arms of a Macrocyclic Complex. European Journal of Inorganic Chemistry, 2010, 2010, 3795-3803.	2.0	28
68	Sizeâ€Controlled Synthesis and Optical Properties of Monodisperse Colloidal Magnesium Oxide Nanocrystals. Angewandte Chemie - International Edition, 2009, 48, 6278-6281.	13.8	54
69	A Stairâ€Shaped Molecular Silver(0) Chain. Angewandte Chemie - International Edition, 2008, 47, 8390-8393.	13.8	14
70	A Redox-Active Two-Dimensional Coordination Polymer:Â Preparation of Silver and Gold Nanoparticles and Crystal Dynamics on Guest Removal. Journal of the American Chemical Society, 2006, 128, 4710-4718.	13.7	254
71	Coordination Polymer Open Frameworks Constructed of Macrocyclic Complexes. Advances in Inorganic Chemistry, 2006, , 39-79.	1.0	33
72	Porous Metalâ^'Organic Framework with Coordinatively Unsaturated MnllSites:Sorption Properties for Various Gases. Inorganic Chemistry, 2006, 45, 8672-8676.	4.0	147

#	Article	IF	CITATIONS
73	Redox-Active Porous Metal-Organic Framework Producing Silver Nanoparticles from Agl Ions at Room Temperature. Angewandte Chemie - International Edition, 2005, 44, 1261-1265.	13.8	272
74	Self-assembly of hybrid solids consisting of 2D supramolecular networks and intercalated metal complexes. Comptes Rendus Chimie, 2005, 8, 1543-1551.	0.5	8