
## Mercedes Becerra-Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/573038/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Initial phthalates fingerprint and hydrochemical signature as key factors controlling phthalates concentration trends in PET-bottled waters during long storage times. Food Chemistry, 2022, 372, 131248.                                                                                                                | 8.2  | 5         |
| 2  | The fundamentals, chemistries and applications of rotating-disk sorptive extraction. TrAC - Trends in Analytical Chemistry, 2021, 137, 116209.                                                                                                                                                                           | 11.4 | 9         |
| 3  | Rapid Determination of Parabens in Water Samples by Ultra-high Performance Liquid Chromatography<br>Coupled to Time of Flight Mass Spectrometry. Analytical Sciences, 2020, 36, 675-679.                                                                                                                                 | 1.6  | 8         |
| 4  | Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Analytica Chimica Acta, 2019, 1087, 1-10.                                                                                                                                                                     | 5.4  | 30        |
| 5  | Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by<br>rotating-disk sorptive extraction–derivatization-gas chromatography/mass spectrometry. Talanta,<br>2019, 201, 480-489.                                                                                                   | 5.5  | 57        |
| 6  | Detection and assignment of inorganic aqueous polymers relevant to environmental nanogeoscience<br>by direct infusion electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2019, 54,<br>495-506.                                                                                                     | 1.6  | 1         |
| 7  | Rotating-disk sorptive extraction coupled to gas chromatography mass spectrometry for the determination of phthalates in bottled water. Analytical Methods, 2019, 11, 6111-6118.                                                                                                                                         | 2.7  | 15        |
| 8  | Characterization and evaluation of phenolic profiles and color as potential discriminating features<br>among Spanish extra virgin olive oils with protected designation of origin. Food Chemistry, 2018, 241,<br>328-337.                                                                                                | 8.2  | 42        |
| 9  | Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta, 2018, 176, 551-557.                                                                                           | 5.5  | 41        |
| 10 | Liquid chromatography–time-of-flight high-resolution mass spectrometry study and determination of<br>the dansylated products of estrogens and their hydroxylated metabolites in water and wastewater.<br>Analytical and Bioanalytical Chemistry, 2018, 410, 7909-7919.                                                   | 3.7  | 21        |
| 11 | Uncertainty in the measurement of toxic metals mobility in mining/mineral wastes by standardized BCR®SEP. Journal of Hazardous Materials, 2018, 360, 587-593.                                                                                                                                                            | 12.4 | 30        |
| 12 | Exploring antioxidant reactivity and molecular structure of phenols by means of two coupled assays<br>using fluorescence probe (2,3-diazabicyclo[2.2.2]oct-2-ene, DBO) and free radical<br>(2,2-diphenyl-1-picrylhydrazyl, \$\$hbox {DPPH}^{cdot }\$\$ DPPH A· ). Journal of Chemical Sciences, 2017,<br>129, 1381-1390. | 1.5  | 6         |
| 13 | Extraction and Determination of Phenolic Compounds in the Berries of Sorbus americana Marsh and Lonicera oblongifolia (Goldie) Hook. Food Analytical Methods, 2015, 8, 2554-2559.                                                                                                                                        | 2.6  | 15        |
| 14 | Ultra-high-performance liquid chromatography—Time-of-flight high resolution mass spectrometry to<br>quantify acidic drugs in wastewater. Journal of Chromatography A, 2015, 1423, 96-103.                                                                                                                                | 3.7  | 25        |
| 15 | Determination of phenolic compounds in olive oil: New method based on liquid–liquid micro<br>extraction and ultra high performance liquid chromatography-triple–quadrupole mass spectrometry.<br>LWT - Food Science and Technology, 2014, 57, 49-57.                                                                     | 5.2  | 49        |
| 16 | Sustainable Preparation of Cardanol-Based Nanocarriers with Embedded Natural Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 2014, 2, 1299-1304.                                                                                                                                                          | 6.7  | 31        |
| 17 | Comparison of Different Extraction Methods to Determine Phenolic Compounds in Virgin Olive Oil.<br>Food Analytical Methods, 2013, 6, 123-132.                                                                                                                                                                            | 2.6  | 45        |