Koen Vandenbroeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5730321/publications.pdf

Version: 2024-02-01

118 papers

3,590 citations

34 h-index 182168 51 g-index

119 all docs

119 docs citations

119 times ranked 5304 citing authors

#	Article	IF	Citations
1	Pathophysiology of Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 3346.	1.8	208
2	Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation. PLoS ONE, 2013, 8, e54722.	1.1	195
3	NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain, 2020, 143, 1414-1430.	3.7	92
4	Occurrence and clinical relevance of an interleukin-4 gene polymorphism in patients with multiple sclerosis. Journal of Neuroimmunology, 1997, 76, 189-192.	1.1	91
5	Refining genetic associations in multiple sclerosis. Lancet Neurology, The, 2008, 7, 567-569.	4.9	90
6	Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. British Journal of Clinical Pharmacology, 2008, 66, 517-528.	1.1	88
7	The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes and Immunity, 2010, 11, 439-445.	2.2	79
8	The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery?. British Journal of Pharmacology, 2011, 162, 328-345.	2.7	76
9	Irreversible inhibition of the bacterial cysteine protease-transpeptidase sortase (SrtA) by substrate-derived affinity labels. Biochemical Journal, 2002, 366, 953-958.	1.7	75
10	Pharmacogenomics of responsiveness to interferon IFN- \hat{l}^2 treatment in multiple sclerosis: A genetic screen of 100 type I interferon-inducible genes. Clinical Pharmacology and Therapeutics, 2005, 78, 635-635.	2.3	71
11	Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy?. Trends in Pharmacological Sciences, 2003, 24, 284-289.	4.0	65
12	Cytokine Gene Polymorphisms and Human Autoimmune Disease in the Era of Genome-Wide Association Studies. Journal of Interferon and Cytokine Research, 2012, 32, 139-151.	0.5	64
13	MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 2013, 136, 1778-1782.	3.7	60
14	Identification of a functional variant in the <i>KIF5A-CYP27B1-METTL1-FAM119B</i> locus associated with multiple sclerosis. Journal of Medical Genetics, 2013, 50, 25-33.	1.5	59
15	IFNG polymorphisms are associated with gender differences in susceptibility to multiple sclerosis. Genes and Immunity, 2005, 6, 153-161.	2.2	57
16	A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes and Immunity, 2012, 13, 21-28.	2.2	56
17	Chitinase 3-like 1 plasma levels are increased in patients with progressive forms of multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 983-990.	1.4	54
18	Tumor necrosis factor \hat{l}_{\pm} and its receptors in relapsing-remitting multiple sclerosis. Journal of the Neurological Sciences, 1997, 152, 51-61.	0.3	49

#	Article	IF	CITATIONS
19	Genetic polymorphisms, their allele combinations and IFN- \hat{l}^2 treatment response in Irish multiple sclerosis patients. Pharmacogenomics, 2009, 10, 1177-1186.	0.6	48
20	Polymorphism analysis suggests that the gelatinase B gene is not a susceptibility factor for multiple sclerosis. Journal of Neuroimmunology, 2000, 105, 58-63.	1.1	46
21	Signalling, inflammation and arthritis: Crossed signals: the role of interleukin (IL)-12, -17, -23 and -27 in autoimmunity. Rheumatology, 2008, 47, 771-776.	0.9	46
22	Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genetics, 2019, 15, e1008180.	1.5	46
23	ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes and Immunity, 2012, 13, 253-257.	2.2	44
24	Polymorphisms in the interferon-î³/interleukin-26 gene region contribute to sex bias in susceptibility to rheumatoid arthritis. Arthritis and Rheumatism, 2003, 48, 2773-2778.	6.7	43
25	Pharmacogenomics and Multiple Sclerosis: Moving Toward Individualized Medicine. Current Neurology and Neuroscience Reports, 2011, 11, 484-491.	2.0	43
26	A functional variant that affects exon-skipping and protein expression of <i>SP140</i> as genetic mechanism predisposing to multiple sclerosis. Human Molecular Genetics, 2015, 24, 5619-5627.	1.4	43
27	The CTLA4 +49 A/C*G–CT60*G haplotype is associated with susceptibility to multiple sclerosis in Flanders. Journal of Neuroimmunology, 2005, 164, 148-153.	1.1	42
28	Inhibiting cytokines of the interleukin-12 family: recent advances and novel challenges. Journal of Pharmacy and Pharmacology, 2010, 56, 145-160.	1.2	42
29	Analysis of an IFN- gamma gene (IFNG) Polymorphism in Multiple Sclerosis in Europe: Effect of Population Structure on Association with Disease. Journal of Interferon and Cytokine Research, 1999, 19, 1037-1046.	0.5	41
30	Linkage disequilibrium analysis of chromosome $12q14\hat{a}\in 15$ in multiple sclerosis: delineation of a 118 -kb interval around interferon- $\hat{1}^3$ (IFNG) that is involved in male versus female differential susceptibility. Genes and Immunity, 2002, 3, 470-476.	2.2	40
31	Celecoxib Inhibits Interleukin- $12 \hat{l}\pm\hat{l}^2$ and \hat{l}^22 Folding and Secretion by a Novel COX2-Independent Mechanism Involving Chaperones of the Endoplasmic Reticulum. Molecular Pharmacology, 2006, 69, 1579-1587.	1.0	40
32	Autophagic Marker MAP1LC3B Expression Levels Are Associated with Carotid Atherosclerosis Symptomatology. PLoS ONE, 2014, 9, e115176.	1.1	39
33	<i>IL7RA</i> polymorphisms and chronic inflammatory arthropathies. Tissue Antigens, 2009, 74, 429-431.	1.0	38
34	New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population. Journal of Neuroimmunology, 2003, 143, 65-69.	1.1	36
35	Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes and Immunity, 2011, 12, 40-45.	2,2	36
36	Replication of top markers of a genome-wide association study in multiple sclerosis in Spain. Genes and Immunity, 2011, 12, 110-115.	2,2	36

3

#	Article	IF	Citations
37	The CTLA4 +Â49A/G and CT60 polymorphisms and chronic inflammatory arthropathies in Northern Ireland. Experimental and Molecular Pathology, 2006, 80, 141-146.	0.9	35
38	Interferon-? gene polymorphism-associated risk for multiple sclerosis in sardinia. Annals of Neurology, 1998, 44, 841-842.	2.8	34
39	Genome-wide significant association of ANKRD 55 rs 6859219 and multiple sclerosis risk. Journal of Medical Genetics, 2013, 50, 140-143.	1.5	34
40	Genome-wide significant association with seven novel multiple sclerosis risk loci. Journal of Medical Genetics, 2015, 52, 848-855.	1.5	34
41	Interferon Gamma Allelic Variants. Archives of Neurology, 2008, 65, 349-57.	4.9	33
42	IL7RAPolymorphisms and Susceptibility to Multiple Sclerosis. New England Journal of Medicine, 2008, 358, 753-754.	13.9	32
43	Closing the case of <i>APOE</i> in multiple sclerosis: no association with disease risk in over 29â€000 subjects: Figure 1. Journal of Medical Genetics, 2012, 49, 558-562.	1.5	31
44	Refolding and single-step purification of porcine interferon-gamma from Escherichia coli inclusion bodies. Conditions for reconstitution of dimeric IFN-gamma. FEBS Journal, 1993, 215, 481-486.	0.2	30
45	Polymorphisms in the interleukin-4 and IL-4 receptor genes and multiple sclerosis: a study in Spanish-Basque, Northern Irish and Belgian populations. International Journal of Immunogenetics, 2005, 32, 383-388.	0.8	29
46	Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans. Journal of Neuroimmunology, 2006, 179, 108-116.	1.1	29
47	Validation of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain. Journal of Neuroimmunology, 2010, 223, 100-103.	1.1	29
48	Human Endogenous Retrovirus HERV-Fc1 Association with Multiple Sclerosis Susceptibility: A Meta-Analysis. PLoS ONE, 2014, 9, e90182.	1.1	29
49	PECAM1, MPO and PRKAR1A at chromosome 17q21-q24 and susceptibility for multiple sclerosis in Sweden and Sardinia. Journal of Neuroimmunology, 2000, 108, 153-159.	1.1	28
50	Replication study of 10 genes showing evidence for association with multiple sclerosis: validation of TMEM39A, IL12B and CLBL genes. Multiple Sclerosis Journal, 2012, 18, 959-965.	1.4	28
51	<i>TNFRSF1A</i> polymorphisms rs1800693 and rs4149584 in patients with multiple sclerosis. Neurology, 2013, 80, 2010-2016.	1.5	28
52	Response to interferon-beta treatment in multiple sclerosis patients: a genome-wide association study. Pharmacogenomics Journal, 2017, 17, 312-318.	0.9	28
53	Multi-chaperone complexes regulate the folding of interferon- \hat{l}^3 in the endoplasmic reticulum. Cytokine, 2006, 33, 264-273.	1.4	25
54	Pharmacogenomics of Type I interferon therapy: A survey of response-modifying genes. Cytokine and Growth Factor Reviews, 2007, 18, 211-222.	3.2	25

#	Article	IF	CITATIONS
55	CTLA4 gene polymorphisms and multiple sclerosis in Northern Ireland. Journal of Neuroimmunology, 2007, 187, 187-191.	1.1	25
56	Allelic combinations of immune-response genes associated with glatiramer acetate treatment response in Russian multiple sclerosis patients. Pharmacogenomics, 2012, 13, 43-53.	0.6	25
57	Microsatellite polymorphisms in the gene promoter of monocyte chemotactic protein-3 and analysis of the association between monocyte chemotactic protein-3 alleles and multiple sclerosis development. Journal of Neuroimmunology, 1999, 95, 195-201.	1.1	24
58	Chromosome 7q21–22 and multiple sclerosis: evidence for a genetic susceptibility effect in vicinity to the protachykinin-1 gene. Journal of Neuroimmunology, 2002, 125, 141-148.	1.1	23
59	Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6. PLoS ONE, 2013, 8, e62376.	1.1	23
60	Engineering by pcr-based exon amplification of the genomic porcine interferon-gamma DNA for expression in Escherichia coli. Biochemical and Biophysical Research Communications, 1991, 180, 1408-1415.	1.0	22
61	A genome wide scan for association with multiple sclerosis in a N. Irish case control population. Journal of Neuroimmunology, 2003, 143, 93-96.	1.1	22
62	Novel Insights into the Multiple Sclerosis Risk Gene <i>ANKRD55</i> . Journal of Immunology, 2016, 196, 4553-4565.	0.4	21
63	RNAseq based transcriptomics study of SMCs from carotid atherosclerotic plaque: BMP2 and IDs proteins are crucial regulators of plaque stability. Scientific Reports, 2017, 7, 3470.	1.6	21
64	Characterization of Carotid Smooth Muscle Cells during Phenotypic Transition. Cells, 2018, 7, 23.	1.8	21
65	IFN- \hat{I}^2 pharmacogenomics in multiple sclerosis. Pharmacogenomics, 2010, 11, 1137-1148.	0.6	20
66	The Conserved Helix C Region in the Superfamily of Interferon- \hat{l}^3 /Interleukin-10-related Cytokines Corresponds to a High-affinity Binding Site for the HSP70 Chaperone DnaK. Journal of Biological Chemistry, 2002, 277, 25668-25676.	1.6	19
67	A 4-trifluoromethyl analogue of celecoxib inhibits arthritis by suppressing innate immune cell activation Arthritis Research and Therapy, 2012, 14, R9.	1.6	19
68	Pharmacogenomic study in patients with multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e154.	3.1	19
69	Recombinant Porcine IFN- \hat{I}^3 Potentiates the Secondary IgG and IgA Responses to an Inactivated Suid Herpesvirus-1 Vaccine and Reduces Postchallenge Weight Loss and Fever in Pigs. Journal of Interferon and Cytokine Research, 1998, 18, 739-744.	0.5	18
70	Cross-linking approach to affinity capture of protein complexes from chaotrope-solubilized cell lysates. Analytical Biochemistry, 2004, 324, 137-142.	1.1	18
71	Inhibition of Secretion of Interleukin (IL)-12/IL-23 Family Cytokines by 4-Trifluoromethyl-celecoxib Is Coupled to Degradation via the Endoplasmic Reticulum Stress Protein HERP. Journal of Biological Chemistry, 2010, 285, 6960-6969.	1.6	18
72	IL28B polymorphisms are not associated with the response to interferon-beta in multiple sclerosis. Journal of Neuroimmunology, 2011, 239, 101-104.	1.1	18

5

#	Article	IF	CITATIONS
73	Inflammation in human carotid atheroma plaques. Cytokine and Growth Factor Reviews, 2018, 39, 62-70.	3.2	18
74	Gene sequence, cDNA construction, expression in Escherichia coli and genetically approached purification of porcine interleukin-1beta. FEBS Journal, 1993, 217, 45-52.	0.2	17
75	Interleukin-12 p40 polymorphism and susceptibility to multiple sclerosis. Annals of Neurology, 2002, 52, 524-525.	2.8	16
76	Allelic combinations of immune-response genes as possible composite markers of IFN- \hat{l}^2 efficacy in multiple sclerosis patients. Pharmacogenomics, 2012, 13, 1689-1700.	0.6	16
77	Protein disulfide isomerase-mediated cell-free assembly of recombinant interleukin-12 p40 homodimers. FEBS Journal, 2000, 267, 6679-6683.	0.2	15
78	ITGA4 polymorphisms and susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2007, 189, 151-157.	1,1	15
79	PRIMITIVE ENDOTHELIAL CELL LINES FROM THE PORCINE EMBRYONIC YOLK SAC. In Vitro Cellular and Developmental Biology - Animal, 2002, 38, 334.	0.7	14
80	Haplotype analysis of the preprotachykinin-1 (TAC1) gene in multiple sclerosis. Genes and Immunity, 2005, 6, 265-270.	2.2	14
81	A Trifluoromethyl Analogue of Celecoxib Exerts Beneficial Effects in Neuroinflammation. PLoS ONE, 2013, 8, e83119.	1.1	14
82	Pharmacogenomics of the response to IFN- \hat{l}^2 in multiple sclerosis: ramifications from the first genome-wide screen. Pharmacogenomics, 2008, 9, 639-645.	0.6	13
83	Single-Nucleotide Polymorphisms in Response to Interferon-Beta Therapy in Multiple Sclerosis. Journal of Interferon and Cytokine Research, 2010, 30, 727-732.	0.5	13
84	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	0.8	13
85	Interactome of the Autoimmune Risk Protein ANKRD55. Frontiers in Immunology, 2019, 10, 2067.	2.2	13
86	Boosting Cholesterol Efflux from Foam Cells by Sequential Administration of rHDL to Deliver MicroRNA and to Remove Cholesterol in a Tripleâ€Cell 2D Atherosclerosis Model. Small, 2022, 18, e2105915.	5.2	13
87	The neuropeptide genes TAC1, TAC3, TAC4, VIP and PACAP(ADCYAP1), and susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2007, 183, 208-213.	1.1	12
88	STRUCTURAL IMMUNO-ANALYSIS OF HUMAN AND PORCINE INTERFERON GAMMA: IDENTIFICATION OF SHARED ANTIGENIC DOMAIN. Cytokine, 1997, 9, 550-555.	1.4	11
89	United Europeans for development of pharmacogenomics in multiple sclerosis network. Pharmacogenomics, 2009, 10, 885-894.	0.6	11
90	Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Frontiers in Immunology, 2018, 9, 2934.	2.2	11

#	Article	IF	CITATIONS
91	Cholesterol Efflux Efficiency of Reconstituted HDL Is Affected by Nanoparticle Lipid Composition. Biomedicines, 2020, 8, 373.	1.4	11
92	The MHC2TA $?168A/G$ and $+1614G/C$ polymorphisms and risk for multiple sclerosis or chronic inflammatory arthropathies. Tissue Antigens, 2007, 70, 247-251.	1.0	10
93	A role for autophagy in carotid atherosclerosis. European Stroke Journal, 2016, 1, 255-263.	2.7	10
94	GroEL/ES chaperonins protect interferon-gamma against physicochemical stress. Study of tertiary structure formation by alpha-casein quenching and ELISA. FEBS Journal, 1998, 251, 181-188.	0.2	9
95	Polymorphisms in the interleukin-4 and IL-4 receptor genes modify risk for chronic inflammatory arthropathies in women. Experimental and Molecular Pathology, 2006, 81, 239-244.	0.9	9
96	Analysis of the IL28RA locus as genetic risk factor for multiple sclerosis. Journal of Neuroimmunology, 2012, 245, 98-101.	1.1	9
97	Interferon gamma gene in rheumatoid arthritis. Lancet, The, 2000, 356, 2191.	6.3	8
98	Study of polymorphisms in the interleukin-4 and IL-4 receptor genes in a population of Brazilian patients with multiple sclerosis. Arquivos De Neuro-Psiquiatria, 2007, 65, 15-19.	0.3	8
99	The metallopeptide antibiotic bacitracin inhibits interleukin-12 $\hat{l}\pm\hat{l}^2$ and \hat{l}^22 secretion. Journal of Pharmacy and Pharmacology, 2010, 57, 213-218.	1.2	8
100	Cell-specific effects in different immune subsets associated with <i>SOCS1</i> genotypes in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1498-1512.	1.4	8
101	A Dinucleotide Repeat Polymorphism Located in the IFN- $\hat{l}\pm\hat{l}^2$ Gene Cluster at Chromosome 9p22 Is Not Associated with Multiple Sclerosis in Sardinia. Experimental and Clinical Immunogenetics, 1999, 16, 26-29.	1.4	6
102	High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK. BMC Biochemistry, 2010, 11, 44.	4.4	6
103	Genomic Multiple Sclerosis Risk Variants Modulate the Expression of the ANKRD55–IL6ST Gene Region in Immature Dendritic Cells. Frontiers in Immunology, 2021, 12, 816930.	2.2	6
104	BIRC6 Is Associated with Vulnerability of Carotid Atherosclerotic Plaque. International Journal of Molecular Sciences, 2020, 21, 9387.	1.8	5
105	A New Risk Variant for Multiple Sclerosis at 11q23.3 Locus Is Associated with Expansion of CXCR5+Circulating Regulatory T Cells. Journal of Clinical Medicine, 2020, 9, 625.	1.0	5
106	Novel Transcript Discovery Expands the Repertoire of Pathologically-Associated, Long Non-Coding RNAs in Vascular Smooth Muscle Cells. International Journal of Molecular Sciences, 2021, 22, 1484.	1.8	5
107	Identification of the genetic mechanism that associates <i>L3MBTL3</i> to multiple sclerosis. Human Molecular Genetics, 2022, 31, 2155-2163.	1.4	4
108	Two distinct interleukin-1? genes in the pig genome. Immunogenetics, 1994, 40, 82-82.	1.2	3

7

#	ARTICLE	IF	CITATIONS
109	Interferon- \hat{I}^3 is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE. Biochimie, 1998, 80, 729-737.	1.3	3
110	The era of GWAS is over – Yes. Multiple Sclerosis Journal, 2018, 24, 256-257.	1.4	3
111	Improved conditions for the analysis of large variable number of tandemly repeated (VNTR) unit polymorphisms. Electrophoresis, 1996, 17, 678-680.	1.3	2
112	Pharmacological Targeting of the ER-Resident Chaperones GRP94 or Cyclophilin B Induces Secretion of IL-22 Binding Protein Isoform-1 (IL-22BPi1). International Journal of Molecular Sciences, 2019, 20, 2440.	1.8	2
113	The IFNG–IL26–IL22 Cytokine Gene Cluster. , 2006, , 157-174.		2
114	Corrigendum to "Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans―[J. Neuroimmunol. 179 (2006) 108–116]. Journal of Neuroimmunology, 2007, 189, 175-176.	1.1	1
115	New insights about ANKRD55 in the experimental autoimmune encephalomyelitis model of Multiple sclerosis. Journal of Neuroimmunology, 2014, 275, 148.	1.1	1
116	The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis. Cells, 2020, 9, 175.	1.8	1
117	SNPs in the SOCS1 area are strongly associated with multiple sclerosis and may affect regulatory T cells and dendritic cells. Journal of Neuroimmunology, 2014, 275, 51.	1.1	0
118	Nanopartikulen lipido konposizioak rHDLen kolesterol kanpora-fluxuaren efizientzian eragina du. , 0, , .		O