Xiaodong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5730317/publications.pdf Version: 2024-02-01

XIAODONC CHENC

#	Article	IF	CITATIONS
1	Repurposing epigenetic inhibitors to target the <i>Clostridioides difficile-</i> specific DNA adenine methyltransferase and sporulation regulator CamA. Epigenetics, 2022, 17, 970-981.	1.3	8
2	Structural characterization of dicyanopyridine containing DNMT1-selective, non-nucleoside inhibitors. Structure, 2022, 30, 793-802.e5.	1.6	11
3	Enzymatic characterization of mRNA cap adenosine-N6 methyltransferase PCIF1 activity on uncapped RNAs. Journal of Biological Chemistry, 2022, 298, 101751.	1.6	8
4	Differential ETS1 binding to T:G mismatches within a CpG dinucleotide contributes to C-to-T somatic mutation rate of the IDH2 hotspot at codon Arg140. DNA Repair, 2022, 113, 103306.	1.3	1
5	Enzymatic Characterization of In Vitro Activity of RNA Methyltransferase PCIF1 on DNA. Biochemistry, 2022, 61, 1005-1013.	1.2	6
6	A Role for N6-Methyladenine in DNA Damage Repair. Trends in Biochemical Sciences, 2021, 46, 175-183.	3.7	14
7	ZNF410ÂUniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression. Molecular Cell, 2021, 81, 239-254.e8.	4.5	48
8	Enzymatic characterization of three human RNA adenosine methyltransferases reveals diverse substrate affinities and reaction optima. Journal of Biological Chemistry, 2021, 296, 100270.	1.6	21
9	Preferential CEBP binding to T:G mismatches and increased C-to-T human somatic mutations. Nucleic Acids Research, 2021, 49, 5084-5094.	6.5	8
10	Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nature Communications, 2021, 12, 3436.	5.8	16
11	Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions. Nucleic Acids Research, 2021, 49, 11629-11642.	6.5	40
12	MBD5 and MBD6 couple DNA methylation to gene silencing through the J-domain protein SILENZIO. Science, 2021, 372, 1434-1439.	6.0	38
13	Chemoproteomic Study Uncovers HemK2/KMT9 As a New Target for NTMT1 Bisubstrate Inhibitors. ACS Chemical Biology, 2021, 16, 1234-1242.	1.6	6
14	Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1002-1017.	5.7	99
15	Structural basis for human ZBTB7A action at the fetal globin promoter. Cell Reports, 2021, 36, 109759.	2.9	15
16	Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1002-1017.	5.7	23
17	Detection of DNA Modifications by Sequence-Specific Transcription Factors. Journal of Molecular Biology, 2020, 432, 1661-1673.	2.0	15
18	Structure of Hhal endonuclease with cognate DNA at an atomic resolution of 1.0 Ã Nucleic Acids Research, 2020, 48, 1466-1478.	6.5	5

#	Article	IF	CITATIONS
19	The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes and Development, 2020, 34, 1546-1558.	2.7	44
20	Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA. Nucleic Acids Research, 2020, 48, 10329-10341.	6.5	26
21	KRAB domain of ZFP568 disrupts TRIM28-mediated abnormal interactions in cancer cells. NAR Cancer, 2020, 2, zcaa007.	1.6	4
22	Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Research, 2020, 48, 10034-10044.	6.5	21
23	Characterization of SETD3 methyltransferase–mediated protein methionine methylation. Journal of Biological Chemistry, 2020, 295, 10901-10910.	1.6	14
24	An engineered variant of SETD3 methyltransferase alters target specificity from histidine to lysine methylation. Journal of Biological Chemistry, 2020, 295, 2582-2589.	1.6	15
25	The ZBTB24-CDCA7 axis regulates HELLS enrichment at centromeric satellite repeats to facilitate DNA methylation. Protein and Cell, 2020, 11, 214-218.	4.8	21
26	Structural basis for the target specificity of actin histidine methyltransferase SETD3. Nature Communications, 2019, 10, 3541.	5.8	27
27	The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site. Nature Communications, 2019, 10, 4600.	5.8	26
28	Human HemK2/KMT9/N6AMT1 is an active protein methyltransferase, but does not act on DNA in vitro, in the presence of Trm112. Cell Discovery, 2019, 5, 50.	3.1	27
29	Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Research, 2019, 47, 8388-8398.	6.5	29
30	Structural basis for preferential binding of human TCF4 to DNA containing 5-carboxylcytosine. Nucleic Acids Research, 2019, 47, 8375-8387.	6.5	19
31	Discovery of a Novel Chemotype of Histone Lysine Methyltransferase EHMT1/2 (GLP/G9a) Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Co-crystal Structure. Journal of Medicinal Chemistry, 2019, 62, 2666-2689.	2.9	33
32	Human MettL3–MettL14 complex is a sequence-specific DNA adenine methyltransferase active on single-strand and unpaired DNA in vitro. Cell Discovery, 2019, 5, 63.	3.1	45
33	Structural basis for effects of CpA modifications on C/EBPÎ ² binding of DNA. Nucleic Acids Research, 2019, 47, 1774-1785.	6.5	23
34	SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature, 2019, 565, 372-376.	13.7	116
35	The non-specific adenine DNA methyltransferase M.EcoGII. Nucleic Acids Research, 2018, 46, 840-848.	6.5	41
36	Role for first zinc finger of WT1 in DNA sequence specificity: Denys–Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites. Nucleic Acids Research, 2018, 46, 3864-3877.	6.5	20

3

#	Article	IF	CITATIONS
37	DNA Conformation Induces Adaptable Binding by Tandem Zinc Finger Proteins. Cell, 2018, 173, 221-233.e12.	13.5	52
38	Insights into the Action of Inhibitor Enantiomers against Histone Lysine Demethylase 5A. Journal of Medicinal Chemistry, 2018, 61, 3193-3208.	2.9	9
39	Structure-Based Engineering of Irreversible Inhibitors against Histone Lysine Demethylase KDM5A. Journal of Medicinal Chemistry, 2018, 61, 10588-10601.	2.9	28
40	KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biology, 2018, 16, e2006134.	2.6	106
41	Detecting and interpreting DNA methylation marks. Current Opinion in Structural Biology, 2018, 53, 88-99.	2.6	39
42	Sirtuin 2 mutations in human cancers impair its function in genome maintenance. Journal of Biological Chemistry, 2017, 292, 9919-9931.	1.6	29
43	MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Research, 2017, 45, 2396-2407.	6.5	69
44	Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA. Molecular Cell, 2017, 66, 711-720.e3.	4.5	198
45	A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568. Science, 2017, 356, 757-759.	6.0	52
46	The Role of N-α-acetyltransferase 10 Protein in DNA Methylation and Genomic Imprinting. Molecular Cell, 2017, 68, 89-103.e7.	4.5	36
47	The Molecular Basis of Histone Demethylation. Cancer Drug Discovery and Development, 2017, , 151-219.	0.2	8
48	Structural basis of human PR/SET domain 9 (PRDM9) allele C–specific recognition of its cognate DNA sequence. Journal of Biological Chemistry, 2017, 292, 15994-16002.	1.6	15
49	Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature, 2017, 552, 404-409.	13.7	378
50	Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Research, 2017, 45, 2503-2515.	6.5	38
51	Denys-Drash syndrome associated WT1 glutamine 369 mutants have altered sequence-preferences and altered responses to epigenetic modifications. Nucleic Acids Research, 2016, 44, gkw766.	6.5	18
52	Distinctive Klf4 mutants determine preference for DNA methylation status. Nucleic Acids Research, 2016, 44, gkw774.	6.5	19
53	Structural Basis for KDM5A Histone Lysine Demethylase Inhibition by Diverse Compounds. Cell Chemical Biology, 2016, 23, 769-781.	2.5	80
54	DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. Advances in Experimental Medicine and Biology, 2016, 945, 321-341.	0.8	37

#	Article	IF	CITATIONS
55	Lin28A Binds Active Promoters and Recruits Tet1 to Regulate Gene Expression. Molecular Cell, 2016, 61, 153-160.	4.5	74
56	Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases. Journal of Biological Chemistry, 2016, 291, 2631-2646.	1.6	95
57	Structural basis for human PRDM9 action at recombination hot spots. Genes and Development, 2016, 30, 257-265.	2.7	46
58	Binding of 14-3-3 reader proteins to phosphorylated DNMT1 facilitates aberrant DNA methylation and gene expression. Nucleic Acids Research, 2016, 44, 1642-1656.	6.5	16
59	Structure of <i>Naegleria</i> Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA. Nucleic Acids Research, 2015, 43, 10713-10721.	6.5	26
60	Biochemical characterization of a <i>Naegleria</i> TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4316-4321.	3.3	51
61	Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Research, 2015, 43, 4296-4308.	6.5	11
62	Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme. ACS Catalysis, 2015, 5, 892-899.	5.5	19
63	The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations. Journal of Biological Chemistry, 2015, 290, 20723-20733.	1.6	35
64	Structure and mutagenesis of the DNA modification-dependent restriction endonuclease AspBHI. Scientific Reports, 2015, 4, 4246.	1.6	14
65	Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA Methyltransferase 3A Activity. PLoS ONE, 2014, 9, e96941.	1.1	35
66	Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes and Development, 2014, 28, 2304-2313.	2.7	111
67	Modification-dependent restriction endonuclease, MspJl, flips 5-methylcytosine out of the DNA helix. Nucleic Acids Research, 2014, 42, 12092-12101.	6.5	22
68	Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA. Nucleic Acids Research, 2014, 42, 7947-7959.	6.5	27
69	Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Research, 2014, 42, 4859-4867.	6.5	81
70	Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature, 2014, 506, 391-395.	13.7	113
71	Ectopic DNMT3L Triggers Assembly of a Repressive Complex for Retroviral Silencing in Somatic Cells. Journal of Virology, 2014, 88, 10680-10695.	1.5	26
72	The Carboxy-Terminal Domain of ROS1 Is Essential for 5-Methylcytosine DNA Glycosylase Activity. Journal of Molecular Biology, 2014, 426, 3703-3712.	2.0	18

#	Article	IF	CITATIONS
73	Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells. Journal of Medicinal Chemistry, 2014, 57, 701-713.	2.9	111
74	Structural and Functional Coordination of DNA and Histone Methylation. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018747-a018747.	2.3	88
75	Fragile X syndrome due to a missense mutation. European Journal of Human Genetics, 2014, 22, 1185-1189.	1.4	73
76	Selective Excision of 5-Carboxylcytosine by a Thymine DNA Glycosylase Mutant. Journal of Molecular Biology, 2013, 425, 971-976.	2.0	28
77	Activity and crystal structure of human thymine DNA glycosylase mutant N140A with 5-carboxylcytosine DNA at low pH. DNA Repair, 2013, 12, 535-540.	1.3	28
78	DNA Recognition of 5-Carboxylcytosine by a Zfp57 Mutant at an Atomic Resolution of 0.97 Ã Biochemistry, 2013, 52, 9310-9317.	1.2	19
79	A common mode of recognition for methylated CpG. Trends in Biochemical Sciences, 2013, 38, 177-183.	3.7	89
80	An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes and Development, 2012, 26, 2374-2379.	2.7	112
81	Structure and cleavage activity of the tetrameric MspJI DNA modification-dependent restriction endonuclease. Nucleic Acids Research, 2012, 40, 9763-9773.	6.5	38
82	Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Research, 2012, 40, 4841-4849.	6.5	400
83	Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Nucleic Acids Research, 2012, 40, 8276-8284.	6.5	88
84	Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Research, 2012, 40, 10203-10214.	6.5	134
85	Introduction—Epiphanies in Epigenetics. Progress in Molecular Biology and Translational Science, 2011, 101, 1-21.	0.9	18
86	Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nature Immunology, 2011, 12, 29-36.	7.0	230
87	Defective heart development in hypomorphic LSD1 mice. Cell Research, 2011, , .	5.7	2
88	Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling. Nucleic Acids Research, 2011, 39, 6380-6389.	6.5	61
89	Coordinated Chromatin Control: Structural and Functional Linkage of DNA and Histone Methylation. Biochemistry, 2010, 49, 2999-3008.	1.2	199
90	Adding a Lysine Mimic in the Design of Potent Inhibitors of Histone Lysine Methyltransferases. Journal of Molecular Biology, 2010, 400, 1-7.	2.0	108

#	Article	IF	CITATIONS
91	Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nature Structural and Molecular Biology, 2009, 16, 312-317.	3.6	272
92	Analysis of the Substrate Specificity of the Dim-5 Histone Lysine Methyltransferase Using Peptide Arrays. Chemistry and Biology, 2008, 15, 5-11.	6.2	68
93	Protein lysine methyltransferase G9a acts on non-histone targets. Nature Chemical Biology, 2008, 4, 344-346.	3.9	309
94	Mammalian DNA Methyltransferases: A Structural Perspective. Structure, 2008, 16, 341-350.	1.6	349
95	The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature, 2008, 455, 826-829.	13.7	389
96	Epigenetic link between DNA methylation and histone modifications. FASEB Journal, 2008, 22, 778.1.	0.2	1
97	DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 2007, 448, 714-717.	13.7	1,369
98	Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature, 2007, 448, 718-722.	13.7	386
99	Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 2007, 449, 248-251.	13.7	717
100	Structural dynamics of protein lysine methylation and demethylation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 618, 102-115.	0.4	61
101	Structure and Substrate Recognition of the Escherichia coli DNA Adenine Methyltransferase. Journal of Molecular Biology, 2006, 358, 559-570.	2.0	115
102	DNA nicking by HinP1I endonuclease: bending, base flipping and minor groove expansion. Nucleic Acids Research, 2006, 34, 939-948.	6.5	44
103	Structural and Sequence Motifs of Protein (Histone) Methylation Enzymes. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 267-294.	18.3	305
104	In Vitro and in Vivo Analyses of a Phe/Tyr Switch Controlling Product Specificity of Histone Lysine Methyltransferases. Journal of Biological Chemistry, 2005, 280, 5563-5570.	1.6	166
105	Structure of HinP1I endonuclease reveals a striking similarity to the monomeric restriction enzyme Mspl. Nucleic Acids Research, 2005, 33, 1892-1901.	6.5	31
106	Transition from Nonspecific to Specific DNA Interactions along the Substrate-Recognition Pathway of Dam Methyltransferase. Cell, 2005, 121, 349-361.	13.5	90
107	The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biology, 2005, 6, 227.	13.9	661
108	Structure of the Conserved Core of the Yeast Dot1p, a Nucleosomal Histone H3 Lysine 79 Methyltransferase. Journal of Biological Chemistry, 2004, 279, 43296-43306.	1.6	111

#	Article	IF	CITATIONS
109	Many paths to methyltransfer: a chronicle of convergence. Trends in Biochemical Sciences, 2003, 28, 329-335.	3.7	766
110	Structure of the Predominant Protein Arginine Methyltransferase PRMT1 and Analysis of Its Binding to Substrate Peptides. Structure, 2003, 11, 509-520.	1.6	317
111	Structure of the bacteriophage T4 DNA adenine methyltransferase. Nature Structural and Molecular Biology, 2003, 10, 849-855.	3.6	42
112	Structural Basis for the Product Specificity of Histone Lysine Methyltransferases. Molecular Cell, 2003, 12, 177-185.	4.5	307
113	Mismatch Repair in Methylated DNA. Journal of Biological Chemistry, 2003, 278, 5285-5291.	1.6	68
114	Structure of the Neurospora SET Domain Protein DIM-5, a Histone H3 Lysine Methyltransferase. Cell, 2002, 111, 117-127.	13.5	247
115	Cytosines Do It, Thymines Do It, Even Pseudouridines Do It—Base Flipping by an Enzyme that Acts on RNA. Structure, 2002, 10, 127-129.	1.6	11
116	The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nature Structural Biology, 2002, 9, 217-24.	9.7	168
117	A Taq attack displaces bases. , 2001, 8, 101-103.		10
118	Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO Journal, 2000, 19, 3509-3519.	3.5	279
119	Pvull endonuclease contains two calcium ions in active sites11Edited by A. R. Fersht. Journal of Molecular Biology, 2000, 300, 1049-1056.	2.0	78
120	Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 285, 2021-2034.	2.0	71
121	STRUCTURE AND EVOLUTION OF ADOMET-DEPENDENT METHYLTRANSFERASES. , 1999, , 1-38.		57
122	Structures of Hhal methyltransferase complexed with substrates containing mismatches at the target base. Nature Structural Biology, 1998, 5, 872-877.	9.7	102
123	BASE FLIPPING. Annual Review of Biochemistry, 1998, 67, 181-198.	5.0	327
124	Mechanistic link between DNA methyltransferases and DNA repair enzymes by base flipping. , 1997, 44, 139-151.		14
125	DNA modification by methyltransferases. Current Opinion in Structural Biology, 1995, 5, 4-10.	2.6	120
126	Universal Catalytic Domain Structure of AdoMet-dependent Methyltransferases. Journal of Molecular Biology, 1995, 247, 16-20.	2.0	246

8

#	Article	IF	CITATIONS
127	Structure-guided Analysis Reveals Nine Sequence Motifs Conserved among DNA Amino-methyl-transferases, and Suggests a Catalytic Mechanism for these Enzymes. Journal of Molecular Biology, 1995, 253, 618-632.	2.0	457
128	Hhal methyltransferase flips its target base out of the DNA helix. Cell, 1994, 76, 357-369.	13.5	988
129	The DNA (cytosine-5) methyltransferases. Nucleic Acids Research, 1994, 22, 1-10.	6.5	444
130	Crystal structure of the Hhal DNA methyltransferase complexed with S-adenosyl-l-methionine. Cell, 1993, 74, 299-307.	13.5	391
131	Restriction-Modification Systems. , 0, , 177-225.		17