
Yuji Ohya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5729841/publications.pdf Version: 2024-02-01

Υπη Οηλα

#	Article	IF	CITATIONS
1	A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology. Energies, 2010, 3, 634-649.	3.1	255
2	Development of a shrouded wind turbine with a flanged diffuser. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 524-539.	3.9	247
3	Experiments on vortex shedding from flat plates with square leading and trailing edges. Journal of Fluid Mechanics, 1991, 222, 437.	3.4	159
4	An investigation of flow fields around flanged diffusers using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92, 315-330.	3.9	150
5	Wind-Tunnel Study Of Atmospheric Stable Boundary Layers Over A Rough Surface. Boundary-Layer Meteorology, 2001, 98, 57-82.	2.3	131
6	The effects of turbulence on the mean flow past two-dimensional rectangular cylinders. Journal of Fluid Mechanics, 1984, 149, 255.	3.4	103
7	TURBULENCE STRUCTURE IN A STRATIFIED BOUNDARY LAYER UNDER STABLE CONDITIONS. Boundary-Layer Meteorology, 1997, 83, 139-162.	2.3	84
8	A numerical study of vortex shedding from flat plates with square leading and trailing edges. Journal of Fluid Mechanics, 1992, 236, 445-460.	3.4	69
9	Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine. Renewable Energy, 2015, 78, 386-397.	8.9	60
10	Intermittent Bursting of Turbulence in a Stable Boundary Layer with Low-level Jet. Boundary-Layer Meteorology, 2008, 126, 349-363.	2.3	53
11	Numerical simulation of atmospheric flow over complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 81, 283-293.	3.9	50
12	Numerical Studies of Flow around a Wind Turbine Equipped with a Flanged-Diffuser Shroud Using an Actuator-Disk Model. Wind Engineering, 2012, 36, 455-472.	1.9	41
13	Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud. Energies, 2012, 5, 5229-5242.	3.1	39
14	Application of a Diffuser Structure to Vertical-Axis Wind Turbines. Energies, 2016, 9, 406.	3.1	38
15	Improvement in Solar Chimney Power Generation by Using a Diffuser Tower. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.8	35
16	Turbulence Structure of Stable Boundary Layers with a Near-Linear Temperature Profile. Boundary-Layer Meteorology, 2003, 108, 19-38.	2.3	28
17	PIV measurements of flows around the wind turbines with a flanged-diffuser shroud. Journal of Thermal Science, 2008, 17, 375-380.	1.9	28
18	Power Augmentation of Shrouded Wind Turbines in a Multirotor System. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	2.3	26

Үијі Онуа

#	Article	IF	CITATIONS
19	Vortex shedding from square prisms in smooth and turbulent flows. Journal of Fluid Mechanics, 1986, 164, 77-89.	3.4	23
20	Latest Developments in Numerical Wind Synopsis Prediction Using the RIAM-COMPACT® CFD Model—Design Wind Speed Evaluation and Wind Risk (Terrain-Induced Turbulence) Diagnostics in Japan. Energies, 2011, 4, 458-474.	3.1	19
21	Measurements and analysis of the radar signature of a new wind turbine design at <i>X</i> â€band. IET Radar, Sonar and Navigation, 2013, 7, 170-177.	1.8	19
22	Stepwise increase in the Strouhal number for flows around flat plates. International Journal for Numerical Methods in Fluids, 1992, 15, 1025-1036.	1.6	18
23	Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft. Energies, 2016, 9, 1077.	3.1	18
24	New Evaluation Technique for WTG Design Wind Speed Using a CFD-Model-Based Unsteady Flow Simulation with Wind Direction Changes. Modelling and Simulation in Engineering, 2011, 2011, 1-6.	0.7	17
25	Laboratory and Numerical Studies of the Convective Boundary Layer Capped by a Strong Inversion. Boundary-Layer Meteorology, 2004, 112, 223-240.	2.3	16
26	Wind-Tunnel and Numerical Simulations of the Coastal Thermal Internal Boundary Layer. Boundary-Layer Meteorology, 2009, 130, 365-381.	2.3	15
27	Bluff body flow and vortex—its application to wind turbines. Fluid Dynamics Research, 2014, 46, 061423.	1.3	13
28	Machine learning approaches for thermal updraft prediction in wind solar tower systems. Renewable Energy, 2021, 177, 1001-1013.	8.9	13
29	Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind. Energy and Power Engineering, 2014, 06, 362-370.	0.8	13
30	Verification of the Prediction Accuracy of Annual Energy Output at Noma Wind Park by the Non-Stationary and Non-Linear Wind Synopsis Simulator, RIAM-COMPACT. Journal of Fluid Science and Technology, 2008, 3, 344-358.	0.6	12
31	Application of LES Technique to Diagnosis of Wind Farm by Using High Resolution Elevation Data. JSME International Journal Series B, 2006, 49, 567-575.	0.3	11
32	Multirotor Systems Using Three Shrouded Wind Turbines for Power Output Increase. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	2.3	11
33	Laboratory and numerical studies of the atmospheric stable boundary layers. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 2150-2160.	3.9	10
34	Coherence Effects on the Power and Tower Loads of a 7 × 2 MW Multi-Rotor Wind Turbine System. Energies, 2016, 9, 742.	3.1	8
35	Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct. Energies, 2019, 12, 3171.	3.1	7
36	MC4 Wind Energy And Topography 2. Wind Engineers JAWE, 2006, 2006, 349-368.	0.1	7

Үијі Онуа

#	Article	IF	CITATIONS
37	A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser. Energies, 2021, 14, 3661.	3.1	6
38	An Ignored Wind Generates More Electricity: A Solar Updraft Tower to a Wind Solar Tower. International Journal of Photoenergy, 2020, 2020, 1-9.	2.5	4
39	Multi-Rotor Systems Using Five Ducted Wind Turbines for Power Output Increase (Multi Lens Turbine). , 2019, , .		3
40	Visualization of the Behavior of Volcanic Smokes from Miyake-jima by using the Passive Particle Tracking Method. Transactions of Visualization Soc of Japan, 2003, 23, 58-65.	0.2	2
41	ICOPE-15-1068 Aerodynamic analysis of clustered, diffuser-augmented turbines. The Proceedings of the International Conference on Power Engineering (ICOPE), 2015, 2015.12, _ICOPE-15ICOPE-15	0.0	1
42	342 Effects of Blade Profile on Aerodynamic Performance of Wind Turbines With Brimmed Diffuser. The Proceedings of the JSME Annual Meeting, 2005, 2005.2, 255-256.	0.0	1
43	1011 Numerical Simulation of Local Strong Wind Induced by Topographic Effect(1). The Proceedings of the Fluids Engineering Conference, 2007, 2007, _1011-a	0.0	1
44	Evolution and Structure of the Free Convective Layer Developing under a Water Surface. JSME International Journal Series B, 2006, 49, 616-620.	0.3	0
45	Measurement and analysis of the radar signature of a new type of wind turbine. , 2011, , .		0
46	Multi-rotor system using brimmed-diffuser wind turbines for power output increase. , 2017, , .		0
47	Cable (Transmisson Line)& CFD (Environment). Wind Engineers JAWE, 2001, 2001, 185-212.	0.1	0
48	Experimental investigations of flow fields behind a wind tuirbine with flanged difuser. The Proceedings of the Fluids Engineering Conference, 2004, 2004, 167.	0.0	0
49	1701 Large-eddy simulation of flow around a building by using an artificially generated inflow turbulence. The Proceedings of the Fluids Engineering Conference, 2005, 2005, 243.	0.0	0
50	503 Development of a Shrouded Wind Turbine Equipped with a Compact Brimmed Diffuser(1). The Proceedings of the Fluids Engineering Conference, 2006, 2006, _503-a	0.0	0
51	503 Development of a Shrouded Wind Turbine Equipped with a Compact Brimmed Diffuser(2). The Proceedings of the Fluids Engineering Conference, 2006, 2006, _503-1503-4	0.0	0
52	TC4 Atmospheric Boundary Layer. Wind Engineers JAWE, 2006, 2006, 693-708.	0.1	0
53	1011 Numerical Simulation of Local Strong Wind Induced by Topographic Effect(2). The Proceedings of the Fluids Engineering Conference, 2007, 2007, _1011-11011-4	0.0	0
54	1543 Fluid Dynamic Mechanism of Soccer Ball Erratic Behavior with Less Spinning Flight. The Proceedings of the JSME Annual Meeting, 2007, 2007.2, 179-180.	0.0	0

Үијі Онуа

#	Article	IF	CITATIONS
55	1830 Large-Eddy Simulation of Topography-Induced Turbulence around WTG. The Proceedings of the JSME Annual Meeting, 2008, 2008.2, 179-180.	0.0	Ο
56	Edge tone and wind engineering. Wind Engineers JAWE, 2008, 2008, 192-195.	0.1	0
57	J0503-1-3 Influence of various parameters in numerical site calibration of wind power generation. The Proceedings of the JSME Annual Meeting, 2009, 2009.7, 77-78.	0.0	0
58	S0503-3-6 Some Findings about Wake behind Wind Turbine Generator. The Proceedings of the JSME Annual Meeting, 2010, 2010.2, 123-124.	0.0	0
59	Offshore Wind Power - Floating Integrated Energy Platform in Corporation with Fishery. Journal of Smart Processing, 2014, 3, 130-136.	0.1	0
60	Wind systems and atmospheric environments. Wind Engineers JAWE, 1998, 1998, 5-6.	0.1	0
61	Power output and drag characteristics of multi rotor system using diffuser augmented wind turbine. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, J0550304.	0.0	Ο