Nadia No Oulahal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5729424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interstrains comparison of the antimicrobial effect and mode of action of a Vietnamese <i>Cinnamomum cassia</i> essential oil from leaves and its principal component against <i>Listeria monocytogenes</i> . Letters in Applied Microbiology, 2021, 72, 757-766.	2.2	4
2	<i>Staphylococcus aureus</i> membrane-damaging activities of four phenolics. FEMS Microbiology Letters, 2021, 368, .	1.8	2
3	Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides?. Frontiers in Microbiology, 2021, 12, 753518.	3.5	43
4	European survey and evaluation of sampling methods recommended by the standard EN ISO 18593 for the detection of <i>Listeria monocytogenes</i> and <i>Pseudomonas fluorescens</i> on industrial surfaces. FEMS Microbiology Letters, 2020, 367, .	1.8	10
5	Biopreservation of emulsified food and cosmetic products by synergistic action of probiotics and plant extracts: a Franco-Bulgarian perspective. Food Science and Applied Biotechnology, 2020, 3, 167.	0.6	3
6	Assessment of antioxidant activities of an endemic species from Tunisia: Rhanterium sueaveolens Desf related to its phenolic composition. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101355.	3.1	2
7	Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity) Tj ETQq1	107843 3.5	14 rgBT /Ove 420
8	Antilisterial activity of dromedary lactoferrin peptic hydrolysates. Journal of Dairy Science, 2019, 102, 4844-4856.	3.4	13
9	Potential of Incorporation of Antimicrobial Plant Phenolics Into Polyolefin-Based Food Contact Materials to Produce Active Packaging by Melt-Blending: Proof of Concept With Isobutyl-4-Hydroxybenzoate. Frontiers in Chemistry, 2019, 7, 148.	3.6	17
10	Antimicrobial films based on pectin and sodium caseinate for the release of antifungal natamycin. Journal of Food Processing and Preservation, 2019, 43, e13953.	2.0	14
11	Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 2019, 99, 1457-1474.	3.5	271
12	Effect of interactions of plant phenolics with bovine meat proteins on their antibacterial activity. Food Control, 2018, 90, 189-198.	5.5	11
13	Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate—A comparative study of waxes and potassium sorbate effect. Food Packaging and Shelf Life, 2018, 16, 41-50.	7.5	38
14	Development and characterization of a novel edible extruded sheet based on different casein sources and influence of the glycerol concentration. Food Hydrocolloids, 2018, 75, 182-191.	10.7	61
15	Gelatin films with nisin and catechin for minced pork preservation. Food Packaging and Shelf Life, 2018, 18, 173-183.	7.5	59
16	Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein. International Dairy Journal, 2018, 86, 49-56.	3.0	14
17	Effect of interaction with food constituents on plant extracts antibacterial activity. Food Science and Applied Biotechnology, 2018, 1, 77.	0.6	3
18	Low methoxyl pectin/sodium caseinate interactions and composite film formation at neutral pH. Food Hydrocolloids, 2017, 69, 132-140.	10.7	38

NADIA NO OULAHAL

#	Article	IF	CITATIONS
19	Antimicrobial finishing of textiles intended for food processing industry by plasma enhanced chemical vapor deposition – physical vapor deposition of Ag-SiOCH composites coated with Al x O y or SiOCH encapsulation layers. Thin Solid Films, 2017, 628, 132-141.	1.8	20
20	Using complexation for the microencapsulation of nisin in biopolymer matrices by spray-drying. Food Chemistry, 2017, 236, 32-40.	8.2	39
21	pH-dependent complexation of lysozyme with low methoxyl (LM) pectin. Food Chemistry, 2017, 236, 127-133.	8.2	29
22	Preservation of fresh ground beef patties using plant extracts combined with a modified atmosphere packaging. European Food Research and Technology, 2017, 243, 1997-2009.	3.3	28
23	Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments. Frontiers in Microbiology, 2016, 7, 1225.	3.5	68
24	Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusionâ€Blown Films: A Comparative Study with Heatâ€Pressed/Solution Cast Films. Journal of Food Science, 2016, 81, E1141-50.	3.1	7
25	Properties of lysozyme/sodium alginate complexes for the development of antimicrobial films. Food Research International, 2016, 89, 272-280.	6.2	38
26	Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate. Carbohydrate Polymers, 2016, 151, 947-956.	10.2	73
27	Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Critical Reviews in Food Science and Nutrition, 2016, 56, 1262-1274.	10.3	289
28	Nisin as a Food Preservative: Part 2: Antimicrobial Polymer Materials Containing Nisin. Critical Reviews in Food Science and Nutrition, 2016, 56, 1275-1289.	10.3	63
29	Effect of Essential Oils on Cell Viability, Membrane Integrity and Membrane Fluidity of <i>Listeria innocua</i> and <i>Escherichia coli</i> . Journal of Essential Oil-bearing Plants: JEOP, 2016, 19, 155-166.	1.9	11
30	Camel colostrum: Nutritional composition and improvement of the antimicrobial activity after enzymatic hydrolysis. Emirates Journal of Food and Agriculture, 2015, 27, 384.	1.0	10
31	Active biodegradable sodium caseinate films manufactured by blown-film extrusion: Effect of thermo-mechanical processing parameters and formulation on lysozyme stability. Industrial Crops and Products, 2015, 72, 142-151.	5.2	24
32	Effect of a VietnameseCinnamomum cassiaessential oil and its major componenttrans-cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force ofListeria innocua. Canadian Journal of Microbiology, 2015, 61, 263-271.	1.7	42
33	Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde. Journal of Microencapsulation, 2015, 32, 719-723.	2.8	4
34	Effect of low methoxyl (LM) pectin complexation on the thermal and proteolytic inactivation of lysozyme: A kinetic study. Food Hydrocolloids, 2015, 43, 812-818.	10.7	12
35	Preservation of viability and anti-Listeria activity of lactic acid bacteria, Lactococcus lactis and Lactobacillus paracasei, entrapped in gelling matrices of alginate or alginate/caseinate. Food Control, 2015, 47, 7-19.	5.5	29
36	Antimicrobial activity of camel milk casein and its hydrolysates. Acta Alimentaria, 2015, 44, 609-616.	0.7	21

NADIA NO OULAHAL

#	Article	IF	CITATIONS
37	Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion. Mljekarstvo, 2014, , 287-294.	0.6	33
38	Partial characterisation of peptides inhibiting Listeria growth in two Alpine cheeses. Dairy Science and Technology, 2014, 94, 61-72.	2.2	5
39	Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-converting enzyme inhibitory activities of camel colostrum and milk proteins. Dairy Science and Technology, 2014, 94, 205-224.	2.2	59
40	Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. Journal of Food Engineering, 2014, 131, 18-25.	5.2	100
41	Quaternary Ammonium-based Composite Particles for Antibacterial Finishing of Cotton-based Textiles. Journal of Materials Science and Technology, 2014, 30, 19-29.	10.7	27
42	Design of biopolymeric matrices entrapping bioprotective lactic acid bacteria to control Listeria monocytogenes growth: Comparison of alginate and alginate-caseinate matrices entrapping Lactococcus lactis subsp. lactis cells. Food Control, 2014, 37, 200-209.	5.5	21
43	Influence of some formulation and process parameters on the stability of lysozyme incorporated in corn flour- or corn starch-based extruded materials prepared by melt blending processing. Enzyme and Microbial Technology, 2014, 67, 40-46.	3.2	7
44	Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system. Colloids and Surfaces B: Biointerfaces, 2013, 109, 266-272.	5.0	23
45	Assessment of the mode of action of polyhexamethylene biguanide against <i>Listeria innocua</i> by Fourier transformed infrared spectroscopy and fluorescence anisotropy analysis. Canadian Journal of Microbiology, 2012, 58, 1353-1361.	1.7	11
46	Preliminary investigation on the presence of peptides inhibiting the growth of Listeria innocua and Listeria monocytogenes in Asiago d'Allevo cheese. Dairy Science and Technology, 2012, 92, 297-308.	2.2	13
47	EVALUATION OF ANTIMICROBIAL ACTIVITY OF A POLYHEXAMETHYLENE BIGUANIDE OATED TEXTILE BY MONITORING BOTH BACTERIAL GROWTH (ISO 20743/2005 STANDARD) AND VIABILITY (LIVE/DEAD BACLIGHT) Tj	EIQq1 1	01 9 84314 rg
48	Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control, 2011, 22, 1357-1362.	5.5	65
49	Identification of caseinophosphopeptides generated through in vitro gastro-intestinal digestion of Beaufort cheese. International Dairy Journal, 2011, 21, 129-134.	3.0	32
50	Study of the antimicrobial activities of <i>Solanum indicum</i> ssp. distichum (Schumach. and) Tj ETQq0 0 0 rgBT Journal of Biological and Chemical Sciences, 2011, 5, .	Overloci 0.2	k 10 Tf 50 22 3
51	ToF-SIMS and XPS characterization of antimicrobial textiles for the food processing industry. Surface and Interface Analysis, 2011, 43, 604-608.	1.8	7
52	Characterization of Plasma Enhanced Chemical Vapor Deposition–Physical Vapor Deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles. Thin Solid Films, 2011, 519, 5838-5845.	1.8	17
53	Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215, 147-156.	3.9	35
54	Anti-Listeria innocua activity of silver functionalised textile prepared with plasma technology. Food Control, 2010, 21, 505-512.	5.5	42

NADIA NO OULAHAL

#	Article	IF	CITATIONS
55	Examination of wooden shelves used in the ripening of a raw milk smear cheese by FTIR spectroscopy. Food Control, 2009, 20, 658-663.	5.5	19
56	Comparative evaluation of methods for counting surviving biofilm cells adhering to a polyvinyl chloride surface exposed to chlorine or drying. Journal of Applied Microbiology, 2008, 104, 1692-1702.	3.1	60
57	Quantitative analysis of survival of Staphylococcus aureus or Listeria innocua on two types of surfaces: Polypropylene and stainless steel in contact with three different dairy products. Food Control, 2008, 19, 178-185.	5.5	58
58	Removal of meat biofilms from surfaces by ultrasounds combined with enzymes and/or a chelating agent. Innovative Food Science and Emerging Technologies, 2007, 8, 192-196.	5.6	35
59	Biofilm Ecology of Wooden Shelves Used in Ripening the French Raw Milk Smear Cheese Reblochon de Savoie. Journal of Dairy Science, 2007, 90, 1653-1661.	3.4	76
60	Combined effect of chelating agents and ultrasound on biofilm removal from stainless steel surfaces. Application to "Escherichia coli milk―and "Staphylococcus aureus milk―biofilms. Biofilms, 2004, 1, 65-73.	0.6	38
61	" Escherichia coli -milk" Biofilm Removal from Stainless Steel Surfaces: Synergism between Ultrasonic Waves and Enzymes. Biofouling, 2003, 19, 159-168.	2.2	46
62	The development of an ultrasonic apparatus for the non-invasive and repeatable removal of fouling in food processing equipment. Letters in Applied Microbiology, 2000, 30, 47-52.	2.2	57
63	Ultrasonic methodology coupled to ATP bioluminescence for the non-invasive detection of fouling in food processing equipment - validation and application to a dairy factory. Journal of Applied Microbiology, 2000, 89, 433-441.	3.1	34
64	Methodology for a comparative evaluation of sensitivity to fouling and cleanability of floor materials used in the food industry. Biofouling, 2000, 14, 279-286.	2.2	1